[解析](Ⅰ)证明:由题设().得 查看更多

 

题目列表(包括答案和解析)

已知等比数列中,,且,公比,(1)求;(2)设,求数列的前项和

【解析】第一问,因为由题设可知

 故

,又由题设    从而

第二问中,

时,

时, 

时,

分别讨论得到结论。

由题设可知

 故

,又由题设   

从而……………………4分

(2)

时,……………………6分

时,……8分

时,

 ……………………10分

综上可得 

 

查看答案和解析>>

设数列的各项均为正数.若对任意的,存在,使得成立,则称数列为“Jk型”数列.

(1)若数列是“J2型”数列,且,求

(2)若数列既是“J3型”数列,又是“J4型”数列,证明:数列是等比数列.

【解析】1)中由题意,得,…成等比数列,且公比

所以.

(2)中证明:由{}是“j4型”数列,得,…成等比数列,设公比为t. 由{}是“j3型”数列,得

,…成等比数列,设公比为

,…成等比数列,设公比为

…成等比数列,设公比为

 

查看答案和解析>>

如图,已知直线)与抛物线和圆都相切,的焦点.

(Ⅰ)求的值;

(Ⅱ)设上的一动点,以为切点作抛物线的切线,直线轴于点,以为邻边作平行四边形,证明:点在一条定直线上;

(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为,    直线轴交点为,连接交抛物线两点,求△的面积的取值范围.

【解析】第一问中利用圆的圆心为,半径.由题设圆心到直线的距离.  

,解得舍去)

与抛物线的相切点为,又,得.     

代入直线方程得:,∴    所以

第二问中,由(Ⅰ)知抛物线方程为,焦点.   ………………(2分)

,由(Ⅰ)知以为切点的切线的方程为.   

,得切线轴的点坐标为    所以,    ∵四边形FAMB是以FA、FB为邻边作平行四边形

因为是定点,所以点在定直线

第三问中,设直线,代入结合韦达定理得到。

解:(Ⅰ)由已知,圆的圆心为,半径.由题设圆心到直线的距离.  

,解得舍去).     …………………(2分)

与抛物线的相切点为,又,得.     

代入直线方程得:,∴    所以.      ……(2分)

(Ⅱ)由(Ⅰ)知抛物线方程为,焦点.   ………………(2分)

,由(Ⅰ)知以为切点的切线的方程为.   

,得切线轴的点坐标为    所以,    ∵四边形FAMB是以FA、FB为邻边作平行四边形,

因为是定点,所以点在定直线上.…(2分)

(Ⅲ)设直线,代入,  ……)得,                 ……………………………     (2分)

的面积范围是

 

查看答案和解析>>

如图,三棱柱中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。

(I) 证明:平面⊥平面

(Ⅱ)平面分此棱柱为两部分,求这两部分体积的比.

【命题意图】本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.

【解析】(Ⅰ)由题设知BC⊥,BC⊥AC,,∴,    又∵,∴,

由题设知,∴=,即,

又∵,   ∴⊥面,    ∵

∴面⊥面

(Ⅱ)设棱锥的体积为=1,由题意得,==

由三棱柱的体积=1,

=1:1,  ∴平面分此棱柱为两部分体积之比为1:1

 

查看答案和解析>>

设函数f(x)的定义域D关于原点对称,0∈D,且存在常数a>0,使f(a)=1,又f(x1-x2)=
f(x1)-f(x2)1+f(x1)f(x2)

(1)写出f(x)的一个函数解析式,并说明其符合题设条件;
(2)判断并证明函数f(x)的奇偶性;
(3)若存在正常数T,使得等式f(x)=f(x+T)或者f(x)=f(x-T)对于x∈D都成立,则都称f(x)是周期函数,T为周期;试问f(x)是不是周期函数?若是,则求出它的一个周期T;若不是,则说明理由.

查看答案和解析>>


同步练习册答案