题目列表(包括答案和解析)
已知函数f(x)=
在x=0,x=
处存在极值。
(Ⅰ)求实数a,b的值;
(Ⅱ)函数y=f(x)的图象上存在两点A,B使得△AOB是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在y轴上,求实数c的取值范围;
(Ⅲ)当c=e时,讨论关于x的方程f(x)=kx(k∈R)的实根个数。
已知函数
的最小值为0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若对任意的
有
≤
成立,求实数
的最小值;
(Ⅲ)证明
(
).
【解析】(1)解:
的定义域为![]()
![]()
由
,得![]()
当x变化时,
,
的变化情况如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
极小值 |
|
因此,
在
处取得最小值,故由题意
,所以![]()
(2)解:当
时,取
,有
,故
时不合题意.当
时,令
,即![]()
![]()
令
,得![]()
①当
时,
,
在
上恒成立。因此
在
上单调递减.从而对于任意的
,总有
,即
在
上恒成立,故
符合题意.
②当
时,
,对于
,
,故
在
上单调递增.因此当取
时,
,即
不成立.
故
不合题意.
综上,k的最小值为
.
(3)证明:当n=1时,不等式左边=
=右边,所以不等式成立.
当
时,![]()
![]()
![]()
在(2)中取
,得
,
从而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
综上,
,![]()
(12分)已知函数![]()
(1)设
,若函数在区间
上存在极值,求实数a的取值范围;
(2)如果当
时,不等式
恒成立,求实数k的取值范围。
已知函数f(x)=
在x=0,x=
处存在极值。
(Ⅰ)求实数a,b的值;
(Ⅱ)函数y=f(x)的图象上存在两点A,B使得△AOB是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在y轴上,求实数c的取值范围;
(Ⅲ)当c=e时,讨论关于x的方程f(x)=kx(k∈R)的实根个数。
一、选择题
1―5 CADBA 6―10 CBABD 11―12 CC
二、填空题
13.(理)
(文)(―1,1) 14.
15.(理)18(文)(1,0)
16.①③
三、解答题
17.解:(1)由题意得
………………2分

(2)由
可知A、B都是锐角, …………7分

这时三角形为有一顶角为120°的等腰三角形 …………12分
18.(理)解:(1)ξ的所有可能的取值为0,1,2,3。 ………………2分

(2)
………………12分
(文)解:(1)
; ………………6分
(2)因为
…………10分
所以
…………12分
19.解:(1)
, ………………1分
依题意知,
………………3分
(2)令
…………4分
…………5分
所以,
…………7分
(3)由上可知
①当
恒成立,
必须且只须
, …………8分
,
则
………………9分
②当
……10分
要使当
综上所述,t的取值范围是
………………12分
20.解法一:(1)取BB1的中点D,连CD、AD,则∠ACD为所求。…………1分

(2)方法一 作CE⊥AB于E,C1E1⊥A1B1于E1,连EE1,
则AB⊥面CC1E1E,因此平面PAB⊥面CC1E1E。
因为A1B1//AB,所以A1B1//平面PAB。则只需求点E1到平面PAB的距离。
作E1H⊥EP于H,则E1H⊥平面PAB,则E1H即为所求距离。 …………6分
求得
…………8分
方法二:设B1到平面PAB的距离为h,则由
得
………………8分
(3)设平面PAB与平面PA1B1的交线为l,由(2)知,A1B1//平面PAB,
则A1B1//l,因为AB⊥面CC1E1E,则l⊥面CC1E1E,
所以∠EPE1就是二面有AB―P―A1B的平面角。 ………………9分
要使平面PAB⊥平面PA1B1,只需∠EPE1=90°。 ………………10分
在矩形CEE1C1中,
解得
|