21.已知曲线. (Ⅰ)由曲线上任一点向轴作垂线.垂足为.点分所成的比为.问:点的轨迹可能是圆吗?请说明理由, (Ⅱ)如果直线的斜率为.且过点.直线交曲线于.两点.又.求曲线的方程. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)已知曲线C

(1)由曲线C上任一点E向x轴作垂线,垂足为F,点P分所成的比为,问:点P的轨迹可能是圆吗?请说明理由;

如果直线l的一个方向向量为,且过点M(0,-2),直线l交曲线C于A、B两点,又,求曲线C的方程.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),其焦距为2c,若
c
a
=
5
-1
2
(≈0.618),则称椭圆C为“黄金椭圆”.
(1)求证:在黄金椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)中,a、b、c成等比数列.
(2)黄金椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点为F2(c,0),P为椭圆C上的任意一点.是否存在过点F2、P的直线l,使l与y轴的交点R满足
RP
=-3
PF2
?若存在,求直线l的斜率k;若不存在,请说明理由.
(3)在黄金椭圆中有真命题:已知黄金椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)为顶点的菱形ADBE的内切圆过焦点F1、F2.试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.

查看答案和解析>>

已知
i
j
分别是x、y轴正方向的单位向量,点P(x,y)为曲线C上任意一点,
a
=(x-1)
i
+y
j
b
=(x+1)
i
+y
j
且满足
b
i
=|
a
|

(1)求曲线C的方程.
(2)是否存在直线l,使得l与C交于不同两点M、N,且线段MN恰被直线x=
1
2
平分?若存在求出l的倾斜角α的范围,若不存在说明理由.

查看答案和解析>>

已知
i
j
分别是x、y轴正方向的单位向量,点P(x,y)为曲线C上任意一点,
a
=(x-1)
i
+y
j
b
=(x+1)
i
+y
j
且满足
b
i
=|
a
|

(1)求曲线C的方程.
(2)是否存在直线l,使得l与C交于不同两点M、N,且线段MN恰被直线x=
1
2
平分?若存在求出l的倾斜角α的范围,若不存在说明理由.

查看答案和解析>>

((本小题满分12分)

已知点,一动圆过点且与圆内切.

(1)求动圆圆心的轨迹的方程;

(2)设点,点为曲线上任一点,求点到点距离的最大值

(3)在的条件下,设△的面积为是坐标原点,是曲线上横坐标为的点),以为边长的正方形的面积为.若正数使得恒成立,问是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.

 

查看答案和解析>>


同步练习册答案