已知函数..其中是的导函数. 查看更多

 

题目列表(包括答案和解析)

已知函数,其中 的导函数。

(1)若处的导数为4,求实数的值;

(2)对满足的一切的值,都有,求实数的取值范围;

(3)当时,函数的图象与直线只有一个公共点,

求实数的取值范围。

查看答案和解析>>

        

已知函数是定义域为R的偶函数,其图像均在x轴的上方,对任意的,都有,且,又当时,其导函数恒成立。

(Ⅰ)求的值;

(Ⅱ)解关于x的不等式:,其中

查看答案和解析>>

已知函数f(x) = (k为常数,e=2.71828……是自然对数的底数),曲线y= f(x)在点(1,f(1))处的切线与x轴平行。

(Ⅰ)求k的值;

(Ⅱ)求f(x)的单调区间;

(Ⅲ)设g(x)=(x2+x) ,其中为f(x)的导函数,证明:对任意x>0,

查看答案和解析>>

已知函数(k为常数,e=2.71828……是自然对数的底数),曲线在点处的切线与x轴平行。

(1)求k的值;

(2)求的单调区间;

(3)设,其中的导函数,证明:对任意

 

查看答案和解析>>

已知函数的定义域为,部分对应值如下表。的导函数的图像如图所示。

0

下列关于函数的命题:

①函数上是减函数;②如果当时,最大值是,那么的最大值为;③函数个零点,则;④已知的一个单调递减区间,则的最大值为

其中真命题的个数是(           )

A、4个    B、3个  C、2个  D、1个

 

查看答案和解析>>

一.选择题

1.B    2.B  3. A   4.A   5.C   6. D  7.B   8.D   9.B  10.A  11.C   12.C

二.填空题

13.(1, )∪( ,2)       14.      15.      16. ②③④

三.解答题

17.解:(1)两学生成绩绩的茎叶图如图所示……………4分    

(2)将甲、乙两学生的成绩从小到大排列为:

甲: 512  522  528  534  536  538  541  549   554  556   

乙:515  521  527  531  532  536   543  548   558   559   

从以上排列可知甲学生成绩的中位数为……6分  

 乙学生成绩的中位数为       …………8分

甲学生成绩的平均数为:

……………10分   

乙学生成绩的平均数为:

……………12分     

18.解:(1)∵

 ∴

 ∴,∴ ∈(0,π)  ∴ ……4分

(2)∵,即                    ①   …………6分

 又,即    ②   …………8分

 由①②可得,∴     ………………………………………10分

 又,     ……………………………………12分

高三数学试题答案(文科)(共4页)第1页

19.(I)设的中点,连结,则四边形为正方形,……………2分

.故,即

………………………4分

平面,…………………………6分

(II)证明:DC的中点即为E点,    ………………………………………………8分

连D1E,BE   ∴四边形ABED是平行四边形,

∴ADBE,又ADA1D1    A1D1    ∴四边形A1D1EB是平行四边形  D1E//A1B ,

∵D1E平面A1BD   ∴D1E//平面A1BD。……………………………………………12分

20.解:(1)设这二次函数f(x)=ax2+bx (a≠0) ,则

得a=3 ,  b=-2, 所以  f(x)=3x2-2x.  ……………………………………3分

又因为点均在函数的图像上,所以=3n2-2n.

当n≥2时,an=Sn-Sn-1=(3n2-2n)-=6n-5.

当n=1时,a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()………6分

(2)由(1)得知,……8分

故Tn(1-)………10分

因此,要使(1-)<)成立的m,必须且仅须满足

,即m≥10,所以满足要求的最小正整数m为10.  ………………………12分

3x2+x-8<0,

3x2-x-2<0,

 

由-1≤a≤1的一切a的值,都有g(x)<0              -<x<1 …………6分

高三数学试题答案(文科)(共4页)第2页

(2)       a=时,, 函数y=f(x)的图像与直线y=3只有一个公共点,

即函数F(x)= 的图像与x轴只有一个公共点。………8分

知,

若m=0,则 F(x)=0显然只有一个根;

若m≠0,则F(x)在x=-点取得极大值,在x=点取得极小值.

因此必须满足F(-)<0或F()>0,

-<m<0或0<m<

综上可得 -<m <.                                ………………13分

22.解:(1)设椭圆方程为,则.

∴椭圆方程为                   ……………………4分

(2)∵直线l平行于OM,且在y轴上的截距为m,     又KOM=,

,联立方程有

,    ∵直线l与椭圆交于A.B两个不同点,

        …………8分

(3)设直线MA,MB的斜率分别为k1,k2,只需证明k1+k2=0即可

   由

 

高三数学试题答案(文科)(共4页)第3页

故直线MA,MB与x轴始终围成一个等腰三角形. ……………………13分

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

高三数学试题答案(文科)(共4页)第4页