题型一:判断函数的奇偶性 例1.讨论下述函数的奇偶性: 解:(1)函数定义域为R. . ∴f(x)为偶函数, 先化简:.显然为偶函数,从这可以看出.化简后再解决要容易得多. (2)须要分两段讨论: ①设 ②设 ③当x=0时f(x)=0.也满足f(-x)=-f(x), 由①.②.③知.对x∈R有f(-x) =-f(x). ∴f(x)为奇函数, (3).∴函数的定义域为. ∴f(x)=log21=0(x=±1) .即f(x)的图象由两个点 A与B(1.0)组成.这两点既关于y轴对称.又关于原点对称.∴f(x)既是奇函数.又是偶函数, (4)∵x2≤a2, ∴要分a >0与a <0两类讨论. ①当a >0时. .∴当a >0时.f(x)为奇函数, 既不是奇函数.也不是偶函数. 点评:判断函数的奇偶性是比较基本的问题.难度不大.解决问题时应先考察函数的定义域.若函数的解析式能化简.一般应考虑先化简.但化简必须是等价变换过程 例2.(2007年江苏省南京师范大学附属中学)已知函数.给出以下三个条件: (1) 存在.使得, (2) 成立, (3) 在区间上是增函数. 若同时满足条件 和 .则的一个可能的解析式为 . 答案 满足条件时,等,满足条件时,等,满足条件时,等 题型二:奇偶性的应用 例3.山东省潍坊市2008年高三教学质量检测 已知函数为奇函数..且不等式的解集是 ∪ (1)求a,b,c. (2)是否存在实数m使不等式对一切成立?若存在.求出m的取值范围,若不存在.请说明理由. 解:(1)∵ ∴ --1分 ∵ 的解集中包含2和-2, ∴ 即得所以 --2分 ∵ ∴ --3分 下证:当a>0时.在上是增函数 在内任取x1.x2.且x1<x2.那么 即 -5分 所以. 综上所述: --6分 (2)∵ ∴在上也是增函数. -7分 又 ∴ 而 所以.m为任意实数时.不等式 --12分 点评:结合函数的数字特征.借助函数的奇偶性.处理函数的解析式 题型三:判断证明函数的单调性 例5. 本题共有2个小题.第1小题满分8分.第2小题满分8分. 已知函数. (1)若.求的值, (2)若对于恒成立.求实数m的取值范围. [解](1). -----.2分 由条件可知.解得 ----6分 ∵ ----..8分 (2)当 -----10分 即 ------13分 故m的取值范围是 -----.16分 点评:本题用了两种方法:定义法和导数法.相比之下导数法比定义法更为简洁 例6.已知f(x)是定义在R上的增函数.对x∈R有f(x)>0.且f(5)=1.设F(x)= f(x)+.讨论F (x)的单调性.并证明你的结论. 解:这是抽角函数的单调性问题.应该用单调性定义解决 在R上任取x1.x2.设x1<x2.∴f(x2)= f(x1). ∵f(x)是R上的增函数.且f(10)=1. ∴当x<10时0< f(x)<1, 而当x>10时f(x)>1; ① 若x1<x2<5.则0<f(x1)<f(x2)<1, ② ∴0< f(x1)f(x2)<1, ∴<0, ∴F (x2)< F(x1), ②若x2 >x1>5.则f(x2)>f(x1)>1 , ∴f(x1)f(x2)>1, ∴>0, ∴ F(x2)> F (x1), 综上.F (x)在为减函数.在为增函数 点评:该题属于判断抽象函数的单调性.抽象函数问题是函数学习中一类比较特殊的问题.其基本能力是变量代换.换元等.应熟练掌握它们的这些特点 题型四:函数的单调区间 例7.已知定义在R上的奇函数.满足,且在区间[0,2]上是增函数,则 . A. B. C. D. 答案 D 解析 因为满足,所以,所以函数是以8为周期的周期函数, 则,,,又因为在R上是奇函数. ,得,,而由得,又因为在区间[0,2]上是增函数,所以,所以,即,故选D. [命题立意]:本题综合考查了函数的奇偶性.单调性.周期性等性质,运用化归的数学思想和数形结合的思想解答问题. 例8.(1)求函数的单调区间, (2)已知若试确定的单调区间和单调性. 解:(1)函数的定义域为. 分解基本函数为. 显然在上是单调递减的.而在上分别是单调递减和单调递增的.根据复合函数的单调性的规则: 所以函数在上分别单调递增.单调递减. (2)解法一:函数的定义域为R. 分解基本函数为和. 显然在上是单调递减的.上单调递增, 而在上分别是单调递增和单调递减的.且. 根据复合函数的单调性的规则: 所以函数的单调增区间为,单调减区间为. 解法二:. . 令 .得或. 令 .或 ∴单调增区间为,单调减区间为. 点评:该题考察了复合函数的单调性.要记住“同向增.异向减 的规则. 题型五:单调性的应用 例9.已知偶函数f(x)在上为增函数.且f(2)=0.解不等式f[log2(x2+5x+4)]≥0. 解:∵f(2)=0,∴原不等式可化为f[log2(x2+5x+4)]≥f(2). 又∵f(x)为偶函数.且f(x)在上为增函数. ∴f(x)在上为减函数且f(-2)=f(2)=0. ∴不等式可化为 log2(x2+5x+4)≥2 ① 或 log2(x2+5x+4)≤-2 ② 由①得x2+5x+4≥4.∴x≤-5或x≥0 ③ 由②得0<x2+5x+4≤得 ≤x<-4或-1<x≤ ④ 由③④得原不等式的解集为 {x|x≤-5或≤x≤-4或-1<x≤或x≥0. 例10.已知奇函数f(x)的定义域为R.且f(x)在[0.+∞]上是增函数.是否存在实数m.使f(cos2θ-3)+f(4m-2mcosθ)>f(0)对所有θ∈[0,]都成立?若存在.求出符合条件的所有实数m的范围.若不存在.说明理由 解:∵f(x)是R上的奇函数.且在[0.+∞]上是增函数. ∴f(x)是R上的增函数.于是不等式可等价地转化为f(cos2θ-3)>f(2mcosθ-4m). 即cos2θ-3>2mcosθ-4m,即cos2θ-mcosθ+2m-2>0. 设t=cosθ,则问题等价地转化为函数 g(t)?=t2-mt+2m-2=(t-)2-+2m-2在[0.1]上的值恒为正.又转化为函数g(t)在[0.1]上的最小值为正 ∴当<0,即m<0时.g(0)=2m-2>0m>1与m<0不符, 当0≤≤1时.即0≤m≤2时.g(m)=-+2m-2>04-2<m<4+2. ∴4-2<m≤2 当>1,即m>2时.g(1)=m-1>0m>1. ∴m>2 综上.符合题目要求的m的值存在.其取值范围是m>4-2. 另法(仅限当m能够解出的情况): cos2θ-mcosθ+2m-2>0对于θ∈[0,]恒成立.等价于m>(2-cos2θ)/(2-cosθ) 对于θ∈[0,]恒成立 ∵当θ∈[0,]时.(2-cos2θ)/(2-cosθ) ≤4-2.∴m>4-2. 点评:上面两例子借助于函数的单调性处理了恒成立问题和不等式的求解问题 题型六:最值问题 例11. 设为实数.函数. (1)若.求的取值范围, (2)求的最小值, (3)设函数.直接写出不等式的解集. 解 本小题主要考查函数的概念.性质.图象及解一元二次不等式等基础知识.考查灵活运用数形结合.分类讨论的思想方法进行探索.分析与解决问题的综合能力.满分16分 (1)若.则 (2)当时. 当时. 综上 (3)时.得. 当时., 当时.△>0,得: 讨论得:当时.解集为; 当时.解集为; 当时.解集为. 例12.设m是实数.记M={m|m>1}.f(x)=log3(x2-4mx+4m2+m+). (1)证明:当m∈M时.f(x)对所有实数都有意义,反之.若f(x)对所有实数x都有意义.则m∈M, (2)当m∈M时.求函数f(x)的最小值, (3)求证:对每个m∈M,函数f(x)的最小值都不小于1. (1)证明:先将f(x)变形:f(x)=log3[(x-2m)2+m+], 当m∈M时.m>1,∴(x-m)2+m+>0恒成立. 故f(x)的定义域为R 反之.若f(x)对所有实数x都有意义.则只须x2-4mx+4m2+m+>0. 令Δ<0.即16m2-4(4m2+m+)<0.解得m>1.故m∈M. (2)解析:设u=x2-4mx+4m2+m+. ∵y=log3u是增函数. ∴当u最小时.f(x)最小. 而u=(x-2m)2+m+. 显然.当x=m时.u取最小值为m+. 此时f(2m)=log3(m+)为最小值. (3)证明:当m∈M时.m+=(m-1)+ +1≥3. 当且仅当m=2时等号成立. ∴log3(m+)≥log33=1 点评:该题属于函数最值的综合性问题.考生需要结合对数函数以及二次函数的性质来进行处理 题型七:周期问题 例13.若y=f(2x)的图像关于直线和对称.则f(x)的一个周期为( ) A. B. C. D. 解:因为y=f(2x)关于对称.所以f(a+2x)=f(a-2x). 所以f(2a-2x)=f[a+(a-2x)]=f[a-(a-2x)]=f(2x). 同理.f(b+2x) =f(b-2x). 所以f(2b-2x)=f(2x). 所以f(2b-2a+2x)=f[2b-(2a-2x)]=f(2a-2x)=f(2x). 所以f(2x)的一个周期为2b-2a. 故知f(x)的一个周期为4(b-a).选项为D. 点评:考察函数的对称性以及周期性.类比三角函数中的周期变换和对称性的解题规则处理即可.若函数y=f(x)的图像关于直线x=a和x=b对称(a≠b).则这个函数是周期函数.其周期为2(b-a) 例14.已知函数是定义在上的周期函数.周期.函数是奇函数又知在上是一次函数.在上是二次函数.且在时函数取得最小值. ①证明:, ②求的解析式, ③求在上的解析式. 解:∵是以为周期的周期函数. ∴. 又∵是奇函数. ∴. ∴. ②当时.由题意可设. 由得. ∴. ∴. ③∵是奇函数. ∴. 又知在上是一次函数. ∴可设.而. ∴.∴当时.. 从而当时..故时.. ∴当时.有. ∴. 当时.. ∴ ∴. 点评:该题属于普通函数周期性应用的题目.周期性是函数的图像特征.要将其转化成数字特征 查看更多

 

题目列表(包括答案和解析)


同步练习册答案