题目列表(包括答案和解析)
(本小题满分12分)
已知平面区域
被圆C及其内部所覆盖.
(1)当圆C的面积最小时,求圆C的方程;
(2)若斜率为1的直线l与(1)中的圆C交于不同的两点A、B,且满足CA⊥CB,求直线l的方程.
(本小题满分12分) 已知正三棱柱ABC-A1B1C1的各条棱长都为a,P为A1B上的点,且PC⊥AB. (Ⅰ)求二面角P-AC-B的正切值; (Ⅱ)求点B到平面PAC的距离.
(本小题满分12分)
已知M(-3,0)﹑N(3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m(m
-1,m
0).
(1)求P点的轨迹方程并讨论轨迹是什么曲线?
(2)若
, P点的轨迹为曲线C,过点Q(2,0)斜率为
的直线
与曲线C交于不同的两点A﹑B,AB中点为R,直线OR(O为坐标原点)的斜率为
,求证
为定值;
(3)在(2)的条件下,设
,且
,求
在y轴上的截距的变化范围.
![]()
.(本小题满分12分)
已知直四棱柱ABCD—A′B′C′D′的底面是菱形,
,
E、F分别是棱CC′与BB′上的点,且EC=BC=2FB=2.
(1)求证:平面AEF⊥平面AA′C′C;
(2)求截面AEF与底面ABCD的夹角的大小.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com