17. 已知平面α∩平面β=a.平面α⊥平面γ.平面β⊥平面γ.b//a.b//β. 求证:①a⊥γ,②b⊥γ. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

已知平面区域被圆C及其内部所覆盖.

(1)当圆C的面积最小时,求圆C的方程;

(2)若斜率为1的直线l与(1)中的圆C交于不同的两点A、B,且满足CA⊥CB,求直线l的方程.

 

查看答案和解析>>

(本小题满分12分)    已知正三棱柱ABC-A1B1C1的各条棱长都为a,P为A1B上的点,且PC⊥AB.    (Ⅰ)求二面角P-AC-B的正切值; (Ⅱ)求点B到平面PAC的距离.

查看答案和解析>>

(本小题满分12分)

已知M(-3,0)﹑N(3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m(m-1,m0).

(1)求P点的轨迹方程并讨论轨迹是什么曲线?

(2)若, P点的轨迹为曲线C,过点Q(2,0)斜率为的直线与曲线C交于不同的两点A﹑B,AB中点为R,直线OR(O为坐标原点)的斜率为,求证为定值;

(3)在(2)的条件下,设,且,求在y轴上的截距的变化范围.

 

 

 

 

查看答案和解析>>

.(本小题满分12分)

已知直四棱柱ABCD—A′B′C′D′的底面是菱形,

E、F分别是棱CC′与BB′上的点,且EC=BC=2FB=2.

(1)求证:平面AEF⊥平面AA′C′C;

(2)求截面AEF与底面ABCD的夹角的大小.

 

 

 

 

查看答案和解析>>

(本小题满分12分)   已知正三棱柱ABC-A1B1C1的各条棱长都为a,P为A1B上的点,且PC⊥AB.    (Ⅰ)求二面角P-AC-B的正切值; (Ⅱ)求点B到平面PAC的距离.

查看答案和解析>>


同步练习册答案