10.设F1.F2分别是椭圆(a>b>0)的左.右焦点.与直线y=b相切的⊙F2交椭圆于点E.E恰好是直线EF1与⊙F2的切点.则椭圆的离心率为 查看更多

 

题目列表(包括答案和解析)

设F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点,若椭圆C上的一点A(1,
3
2
)到F1,F2的距离之和为4.
(1)求椭圆方程;
(2)若M,N是椭圆C上两个不同的点,线段MN的垂直平分线与x轴交于点P,求证:|
OP
|<
1
2

(3)若M,N是椭圆C上两个不同的点,Q是椭圆C上不同于M,N的任意一点,若直线QM,QN的斜率分别为KQM•KQN.问:“点M,N关于原点对称”是KQM•KQN=-
3
4
的什么条件?证明你的结论.

查看答案和解析>>

(2009•南汇区二模)设F1、F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,其右焦点是直线y=x-1与x轴的交点,短轴的长是焦距的2倍.
(1)求椭圆的方程;
(2)若P是该椭圆上的一个动点,求
PF1
PF2
的最大值和最小值;
(3)若P是该椭圆上的一个动点,点A(5,0),求线段AP中点M的轨迹方程.

查看答案和解析>>

设F1、F2分别是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,若双曲线右支上存在一点P,使|OP|=|OF1|(O为原点),且|PF1|=
3
|PF2|
,则双曲线的离心率为(  )
A、
3
-1
2
B、
3
-1
C、
3
+1
2
D、
3
+1

查看答案和解析>>

设F1,F2分别是双曲线
x2
a2
-
y2
b2
=1
的左、右焦点,若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,则双曲线的离心率为
 

查看答案和解析>>

设F1、F2分别是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,过F1且斜率为k的直线l与E相交于A、B两点,且|AF2|、|AB|、|BF2|成等差数列.
(1)若a=1,求|AB|的值;
(2)若k=1,设点P(0,-1)满足|PA|=|PB|,求椭圆E的方程.

查看答案和解析>>


同步练习册答案