(2)当时.函数的最大值为8.求, 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ax2+(b-8)x-a-ab,当x∈(-3,2)时,f(x)>0,当x∈(-∞,-3)∪(2,+∞)时,f(x)<0.
(1)求f(x)的解析式;
(2)若不等式ax2+bx+c≤0的解集为R,求c的取值范围;
(3)当x>-1时,求y=
f(x)-21x+1
的最大值.

查看答案和解析>>

已知函数f(x)=ax2+(b-8)x-a-ab,当x∈(-3,2)时,f(x)>0,当x∈(-∞,-3)∪(2,+∞)时,f(x)<0.
(1)求f(x)的解析式;
(2)若不等式ax2+bx+c≤0的解集为R,求c的取值范围;
(3)当x>-1时,求y=
f(x)-21
x+1
的最大值.

查看答案和解析>>

已知函数在区间[-1,1),(1,3]内各有一个极值点.

(Ⅰ)求a2-4b的最大值;

(Ⅱ)当a2-4b=8时,设函数y=f(x)在点A(1,f(1))处的切线为l,若在点A处穿过y=f(x)的图象(即动点在点A附近沿曲线y=f(x)运动,经过点A时,从l的一侧进入另一侧),求函数f(x)的表达式.

查看答案和解析>>

已知函数数学公式的定义域为(0,2](a为常数).
(1)证明:当a≥8时,函数y=f(x)在定义域上是减函数;
(2)求函数y=f(x)在定义域上的最大值及最小值,并求出函数取最值时x的值.

查看答案和解析>>

已知函数的定义域为(0,2](a为常数).
(1)证明:当a≥8时,函数y=f(x)在定义域上是减函数;
(2)求函数y=f(x)在定义域上的最大值及最小值,并求出函数取最值时x的值.

查看答案和解析>>


同步练习册答案