(2)写出的分布列并求E. 查看更多

 

题目列表(包括答案和解析)

有两枚大小相同、质地均匀的正四面体骰子,每个骰子的各个面上分别写着数字1、2、3、5。同时投掷这两枚骰子一次,记随机变量为两个朝下的面上的数字之和。

   (1)求

   (2)写出的分布列并求E

查看答案和解析>>

学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设ξ为选出的人中既会唱歌又会跳舞的人数,且

(Ⅰ)求文娱队的人数;

(Ⅱ)写出ξ的概率分布列并计算Eξ.

查看答案和解析>>

学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设ξ为选出的人中既会唱歌又会跳舞的人数,且

(Ⅰ)求文娱队的人数;

(Ⅱ)写出ξ的概率分布列并计算Eξ.

查看答案和解析>>

为备战今年伦敦奥运会,射击队运动员们正在积极备战.若某运动员每次射击成绩为10环的概率为.求该运动员在5次射击中,

(Ⅰ)至少有3次射击成绩为10环的概率;

(Ⅱ)记“射击成绩为10环的次数”为ξ,写出ξ的分布列并求Eξ.(结果用分数表示)

查看答案和解析>>

学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设ξ为选出的人中既会唱歌又会跳舞的人数,且P(ξ>0)=.(Ⅰ)求文娱队的人数;(Ⅱ)写出ξ的概率分布列并计算Eξ.

查看答案和解析>>

Ⅰ选择题

1.C   2. B   3. B   4.B   5.A   6.C   7.A   8.C   9.D   10.A   11.C   12.C

Ⅱ非选择题

13.    14.    15.  16. (2) (3)

17.  解:   (4分)

      (1)增区间  ,  减区间   (8分)

      (2)   (12分)

18.解:因骰子是均匀的,所以骰子各面朝下的可能性相等,设其中一枚骰子朝下的面上的数字为,另一枚骰子朝下的面上的数字为y,则   的取值如下表:

 

x+y    y

x          

1

2

3

5

1

2

3

4

6

2

3

4

5

7

3

4

5

6

8

5

6

7

8

10

从表中可得:

⑴ 

………………8分

的所有可能取值为2,3,4,5,6,7,8,10

的分布列为:

2

3

4

5

6

7

8

10

P

E=2×+3×+4×+5×+6×+7×+8×+10×=5.5………12分

 

19.解:(1)在△CBD中作CO⊥BD.  易证:

CO⊥平面PBD       ∴∠CPO即为所求,

    (4分)

(2)在△PBC中作EF∥BC交PC于F,

又AD∥BC   ∴ AD∥EF   ∴ DF⊥PC

又DP=DC    ∴ F为PC的中点   ∴E为PB的中点,  ∴   (8分)

(3)由(2)得:四边形ADFE为直角梯形,且 EF=1,DF=,AD=2

   ∴

   ∴ 所求部分体积     (12分)

20. 解:(1)

       令

       ∴ 增区间为(0, 1)    减区间为     (4分)

(2)函数图象如图所示:

  ∴ 解为:

  ① a<0,   0个;

   ② a=0,  a>,    1个;

   ③a=,  2个 ;   ④ 0<a<,    3个.     (8分)

(3)

  (12分)

21.解:(1)由

根据待定系数法,可得.得

故:   (4分)

(2)若为奇数,以下证:

由于,即.

①     当为偶数时

②     当为奇数时

                   =

                    

成立.   (12分)

22. 解:⑴

    设M()且

 化简:  (1分)

  ∴    MN为∠F1 MF2的平分线

  ∴

  ∴

     

   (6分)

  ⑵ 代入抛物线

 (9分)

   ∴

①当时,不等式成立

②当

的取值范围为:    (14分)

 


同步练习册答案