求的取值范围. 2008年抚州市高三年级教学质量检测数学试卷 查看更多

 

题目列表(包括答案和解析)

已知数列{an}和{bn}满足:a1=λ,an+1=
23
an+n-4,bn=(-1)n(an-3n+21),其中λ为实数,n为正整数.
(Ⅰ)证明:当λ≠-18时,数列{bn}是等比数列;
(Ⅱ)设Sn为数列{bn}的前n项和,是否存在实数λ,使得对任意正整数n,都有Sn>-12?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

已知向量a(
3
cosωx,sinωx)
,b(sinωx,0),且ω>0,设函数f(x)=(a+b)•b+k.
(1)若f(x)的图象中相邻两条对称轴间的距离不小于
π
2
,求ω的取值范围.
(2)若f(x)的最小正周期为π,且当x∈[-
π
6
π
6
]
时,f(x)的最大值是2,求就k的值.

查看答案和解析>>

已知函数f(x)=
13
x3-2x2+ax(a∈R,x∈R)
在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直.
(Ⅰ)求a的值和切线l的方程;
(Ⅱ)设曲线y=f(x)上任一点处的切线的倾斜角为θ,求θ的取值范围.

查看答案和解析>>

(2012•洛阳模拟)选修4-4:坐标系与参数方程
在直角坐标系xOy中,直线l经过点P(-1,0),其倾斜角为α,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程为ρ2-6ρcosθ+5=0.
(1)若直线l与曲线C有公共点,求α的取值范围;
(2)设M(x,y)为曲线C上任意一点,求x+y的取值范围.

查看答案和解析>>

已知函数f(x)=sin(π-
ωx
2
)cos
ωx
2
+cos2
ωx
2
-
1
2
,(ω>0)
(1)若函数y=f(x)的周期为π,将函数y=f(x)的图象上各点的横坐标缩短为原来的
1
2
倍(纵坐标不变),再把所得的函数图象向右平移
π
8
个单位得到函数y=g(x)的图象,求y=g(x)解析式,并求其对称中心.
(2)若函数y=f(x)在[
π
2
,π]上是减函数,求ω的取值范围.

查看答案和解析>>

Ⅰ选择题

1.C   2. B   3. B   4.B   5.A   6.C   7.A   8.C   9.D   10.A   11.C   12.C

Ⅱ非选择题

13.    14.    15.  16. (2) (3)

17.  解:   (4分)

      (1)增区间  ,  减区间   (8分)

      (2)   (12分)

18.解:因骰子是均匀的,所以骰子各面朝下的可能性相等,设其中一枚骰子朝下的面上的数字为,另一枚骰子朝下的面上的数字为y,则   的取值如下表:

 

x+y    y

x          

1

2

3

5

1

2

3

4

6

2

3

4

5

7

3

4

5

6

8

5

6

7

8

10

从表中可得:

⑴ 

………………8分

的所有可能取值为2,3,4,5,6,7,8,10

的分布列为:

2

3

4

5

6

7

8

10

P

E=2×+3×+4×+5×+6×+7×+8×+10×=5.5………12分

 

19.解:(1)在△CBD中作CO⊥BD.  易证:

CO⊥平面PBD       ∴∠CPO即为所求,

    (4分)

(2)在△PBC中作EF∥BC交PC于F,

又AD∥BC   ∴ AD∥EF   ∴ DF⊥PC

又DP=DC    ∴ F为PC的中点   ∴E为PB的中点,  ∴   (8分)

(3)由(2)得:四边形ADFE为直角梯形,且 EF=1,DF=,AD=2

   ∴

   ∴ 所求部分体积     (12分)

20. 解:(1)

       令

       ∴ 增区间为(0, 1)    减区间为     (4分)

(2)函数图象如图所示:

  ∴ 解为:

  ① a<0,   0个;

   ② a=0,  a>,    1个;

   ③a=,  2个 ;   ④ 0<a<,    3个.     (8分)

(3)

  (12分)

21.解:(1)由

根据待定系数法,可得.得

故:   (4分)

(2)若为奇数,以下证:

由于,即.

①     当为偶数时

②     当为奇数时

                   =

                    

成立.   (12分)

22. 解:⑴

    设M()且

 化简:  (1分)

  ∴    MN为∠F1 MF2的平分线

  ∴

  ∴

     

   (6分)

  ⑵ 代入抛物线

 (9分)

   ∴

①当时,不等式成立

②当

的取值范围为:    (14分)

 


同步练习册答案