根据三垂线定理得 . 查看更多

 

题目列表(包括答案和解析)

如图,已知⊙中,直径垂直于弦,垂足为延长线上一点,切⊙于点,连接于点,证明:

【解析】本试题主要考查了直线与圆的位置关系的运用。要证明角相等,一般运用相似三角形来得到,或者借助于弦切角定理等等。根据为⊙的切线,∴为弦切角

连接   ∴…注意到是直径且垂直弦,所以 且…利用,可以证明。

解:∵为⊙的切线,∴为弦切角

连接   ∴……………………4分

又∵  是直径且垂直弦  ∴   且……………………8分

    ∴

 

查看答案和解析>>

定理:三角形的外心O、重心G、垂心H依次在同一条直线(欧拉线)上,且=,其中外心O是三条边的中垂线的交点,重心G是三条边的中线的交点,垂心H是三条高的交点.如图,在△ABC中,AB>AC,AB>BC,M是边BC的中点,AH⊥BC(N是垂足),O是外心,G是重心,H是垂心,OM=1,则根据定理可求得的最大值是   

查看答案和解析>>

定理:三角形的外心O、重心G、垂心H依次在同一条直线(欧拉线)上,且
OG
=
1
3
OH
,其中外心O是三条边的中垂线的交点,重心G是三条边的中线的交点,垂心H是三条高的交点.如图,在△ABC中,AB>AC,AB>BC,M是边BC的中点,AH⊥BC(N是垂足),O是外心,G是重心,H是垂心,OM=1,则根据定理可求得
OG
HN
的最大值是
1
12
1
12

查看答案和解析>>

在棱长为的正方体中,是线段的中点,.

(1) 求证:^

(2) 求证://平面

(3) 求三棱锥的表面积.

【解析】本试题考查了线线垂直和线面平行的判定定理和表面积公式的运用。第一问中,利用,得到结论,第二问中,先判定为平行四边形,然后,可知结论成立。

第三问中,是边长为的正三角形,其面积为

因为平面,所以

所以是直角三角形,其面积为

同理的面积为面积为.  所以三棱锥的表面积为.

解: (1)证明:根据正方体的性质

因为

所以,又,所以

所以^.               ………………4分

(2)证明:连接,因为

所以为平行四边形,因此

由于是线段的中点,所以,      …………6分

因为平面,所以∥平面.   ……………8分

(3)是边长为的正三角形,其面积为

因为平面,所以

所以是直角三角形,其面积为

同理的面积为,              ……………………10分

面积为.          所以三棱锥的表面积为

 

查看答案和解析>>


同步练习册答案