21.如图:已知直线与x轴.y轴分别交于点A.B.解答下列问题:(1)求以AB为直径的圆的圆心坐标,(2)求的长? 座号 查看更多

 

题目列表(包括答案和解析)

如图1,已知:抛物线轴交于两点,与轴交于点,经过两点的直线是,连结

(1)两点坐标分别为__________)、__________),抛物线的函数关系式为______________

(2)判断的形状,并说明理由;

(3)若内部能否截出面积最大的矩形(顶点各边上)?若能,求出在边上的矩形顶点的坐标;若不能,请说明理由.(本题共11分)

查看答案和解析>>

(本题满分10分)已知二次函数的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.

    (1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物

线的对称轴上,求实数a的值;

    (2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于

边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的

任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即

这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是

否也成立?请你积极探索,并写出探索过程;

    (3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是

否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等

(即这四条线段能构成平行四边形)?请说明理由.

 

查看答案和解析>>

(本题满分10分)已知二次函数的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.

    (1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物

线的对称轴上,求实数a的值;

    (2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于

边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的

任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即

这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是

否也成立?请你积极探索,并写出探索过程;

    (3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是

否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等

(即这四条线段能构成平行四边形)?请说明理由.

 

查看答案和解析>>

(本题满分14分,其中第(1)、(2)小题各4分,第(3)小题6分)已知:如图,在平面直角坐标系xOy中,二次函数的图像经过点A(-1,1)和点B(2,2),该函数图像的对称轴与直线OAOB分别交于点C和点D

1.(1)求这个二次函数的解析式和它的对称轴;

2.(2)求证:∠ABO=∠CBO

3.(3)如果点P在直线AB上,且△POB

与△BCD相似,求点P的坐标.

 

查看答案和解析>>

(本题满分14分,其中第(1)、(2)小题各4分,第(3)小题6分)已知:如图,在平面直角坐标系xOy中,二次函数的图像经过点A(-1,1)和点B(2,2),该函数图像的对称轴与直线OAOB分别交于点C和点D

【小题1】(1)求这个二次函数的解析式和它的对称轴;
【小题2】(2)求证:∠ABO=∠CBO
【小题3】(3)如果点P在直线AB上,且△POB
与△BCD相似,求点P的坐标.

查看答案和解析>>

一、1.B    2.C   3.C   4.B    5.D     6.D

二、7、    8、-2<x<3    9、SSS   10、∏   11、22.5°   12、5

  13、2   14、20    15、15

三、16.(1)      (2)化简结果为(求值时除tang45°外都可带入)

17.(略) 

18.(1)6%   144   ----------2分

(2)甲的平均成绩72×40%+98×40%+60×20%=92(分)----------4分

乙的平均成绩  90×40%+75×40%+95×20%=85(分) ---------6分

   所以他们俩都达到优秀生水平;

 (3)(回答只要合理就给分)                       -----------------8分

19、(1)(略)            --------------------5分

    (2)             --------------------9分

20、0.2小时

21、(1)略                     ------------4分

   (2)               ---------------9分

22(1)    -------------------3分

   (2)定价为3元较为合适 ----------------7分

   (3)当定价为3.5元时利润最大--------11分

23.解:(1)抛物线的解析式为-------------------3分.

(可利用一般式、顶点式、对称性关系等方法解答)

(2)当动点B运动到为顶点时,平行四边形ABCD是菱形,此时点D恰好是抛物线的解析式为的定点,         ---------------5分

,              -------------------6分

所以:.              ------------------7分

文本框:  (3)能为矩形.-------------8分

过点轴于,由点上,可设点的坐标为

易知,当且仅当时,为矩形.

中,由勾股定理得,,---------------9分

(舍去),

所以,当点坐标为时,为矩形,         -----------------10分

此时,点的坐标分别是

因此,符合条件的矩形有且只有2个,即矩形和矩形

设直线轴交于,显然,

 

由该图形的对称性知矩形与矩形重合部分是菱形,

其面积为.---------11分

 

 


同步练习册答案