一元一次方程的应用. 知识梳理 知识点1:等式及其性质 重点:等式的基本性质的理解 难点:性质的运用 等式及其性质 ⑴ 等式:用等号“= 来表示 关系的式子叫等式. ⑵ 性质:① 如果.那么 , ② 如果.那么 ,如果.那么 . 例:已知等式.则下列等式中不一定成立的是( ) (A) (B) (C) (D) 解题思路:利用等式的性质(1)两边都减去5.则A正确,利用性质(1)两边都加1.则B正确,性质(2)两边都除以3.则D正确,故选C 知识点2:一元一次方程的概念 重点:一元一次方程的概念 难点:正确理解概念 ⑴ 方程:含有未知数的 叫做方程,使方程左右两边值相等的 .叫做方程的解,求方程解的 叫做解方程. 方程的解与解方程不同. ⑵ 一元一次方程:在整式方程中.只含有 个未知数.并且未知数的次数是 .系数不等于0的方程叫做一元一次方程,它的一般形式为 . 例1.下列各式:①3x+2y=1②m-3=6③x/2+2/3=0.5④x2+1=2⑤z/3-6=5z⑥/3=4⑦5/x+2=1⑧x+5中.一元一次方程的个数是( ) A.1 B.2 C.3 D.4 分析:根据一元一次方程定义.化简后具备以下五个条件:①含有一个未知数②未知数的次数为一次③未知数的系数不为0④分母中不含有未知数⑤是等式.才是一元一次方程.这些条件缺一不可.所以根据上述要求可以确定答案为D. 例2. 如果(m-1)x|m| +5=0是一元一次方程.那么m=___. 分析:此题是依据一元一次方程的定义来解决问题的.要使(m-1)x|m| +5=0是一元一次方程.则必须使|m|=1且m-1≠0.从而确定m=-1 知识点3: 解一元一次方程 重点:解一元一次方程的步骤 难点:熟练解方程 解一元一次方程的步骤: ①去 ,②去 ,③移 ,④合并 ,⑤系数化为1. 例1.要解方程4.5=9x ,最简便的方法应该首先( ) A.去括号 B.移项 C.方程两边同时乘以10 D.方程两边同时除以4.5 分析:由于9是4.5的2倍.所以选择D最简便. 例2.解方程 分析:此题的常规解法是去分母.但是我们看到括号内的分母正好是括号外数字的公约数.所以我们直接去括号即可以达到求解目的. 解:去括号 8x-20x+6 =8-4x+6 移项 8x-20x+4x=8+6-6 合并 -8x=8 系数化为1 x=-1 知识点4:一元一次方程的实际应用 重点:找等量关系列方程 难点:审题找准等量关系.巧妙设未知量 例1.王老师去集贸市场买鸡蛋.小贩称好以后.王老师发现所买的10斤鸡蛋好象比原来少了一些.于是王老师就把鸡蛋拾进了自己的篮子{已知篮子重一斤}里又让小贩称了一下.结果是11斤1两.于是王老师就让小贩找回自己一斤鸡蛋钱.你知道王老师是怎么知道小贩少给自己一斤鸡蛋的吗? 分析:解决问题的关键因素--篮子:为什么不用篮子正好是10斤.而用了篮子就是11斤1两呢?这就是说小贩的称出了问题:一斤的篮子被称成了一斤一两.从而可设小贩称的10斤鸡蛋的实际质量是x斤.由题意分析可知:x:10=1:1.1, 所以x=10:11≈9.09{斤}.也就是说小贩称的10斤鸡蛋实际上约有9.09斤.所以王老师的做法是对的 例2.某校初三年级学生参加社会实践活动.原计划租用30座客车若干辆.但还有15人无座位. (1)设原计划租用30座客车x辆.试用含x的代数式表示该校初三年级学生的总人数, (2)现决定租用40座客车.则可比原计划租30座客车少一辆.且所租40座客车中有一辆没有坐满.只坐35人.请你求出该校初三年级学生的总人数. 分析:本题表示初三年级总人数有两种方案.用30座客车的辆数表示总人数:30x+15 用40座客车的辆数表示总人数:40(x-2)+35. 解:(1)该校初三年级学生的总人数为:30x+15 (2)由题意得: 30x+15=40(x-2)+35 解得:x=6 30x+15=30×6+15=195(人) 答:初三年级总共195人. 最新考题 一元一次方程是中考重点内容之一.其中主要以填空.选择形式出现.列一元一次方程解决简单的实际问题是很多省市每年必考内容.分值大约占15分左右.解决实际问题中考考查的主要方向. 中考课标要求 考点 课标要求 知识与技能目标 了解 理解 掌握 灵活应用 一元一次方程 了解方程.一元一次方程以及方程有解的概念 ∨ 会解一元一次方程.并能灵活应用 ∨ ∨ ∨ 会列一元一次方程解应用题.并能根据问题的实际意义检验所得结果是否合理. ∨ ∨ ∨ 考查目标一 方程解的应用 例1已知方程3x-9x+m=0的一个根是1.则m的值是 . 解题思路:根据方程解的定义.把方程的解x=1代入方程成立.然后解决关于m的方程即可. 解:把x=1代入原方程.得3×-9×1+m=0. 解得m=6 答案:6 点评:解题依据是方程解的定义.解题方法是把方程的解代入原方程.转化为关于待定系数的方程. 考查目标二 巧解一元一次方程 例2解方程: 解题思路:此题先用分配律简化方程.再解就容易了. 解:去括号.得 移项.合并同类项.得-x=6. 系数化为1.得x=-6 点评:解一元一次方程.掌握步骤.注意观察特点.寻找解题技巧.灵活运用分配委或分数基本性质等.使方程简化. 考查目标三 根据方程ax=b解的情况.求待定系数的值 例3已知关于x的方程无解.则a的值是 A.1 B.-1 C.±1 D.不等于1的数 解题思路:需先化成最简形式.再根据无解的条件.列出a的等式或不等式.从而求出a的值. 解:去分母.得2x+6a=3x-x+6. 即0·x=6-6a 因为原方程无解.所以有6-6a≠0. 即a≠1. 答案:D 考查目标四 一元一次方程的应用 例4某班学生为希望工程共捐款131元.比每人平均2 元还多35元.设这个班的学生有x人.根据题意列方程为 . 解题思路:本题的相等关系是捐款总数相等.解决此题的关键是用学生人数.平均数与余数35元表示出捐款总数元. 答案:2x+35=131 过关检测 查看更多

 

题目列表(包括答案和解析)

21、我们在解决数学问题时,经常采用“转化”(或“化归”)的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.
譬如,在学习了一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题.
问题提出:如何把一个正方形分割成n(n≥9)个小正方形?
为解决上面问题,我们先来研究两种简单的“基本分割法”.
基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.
基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.

问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n(n≥9)个小正方形.
(1)把一个正方形分割成9个小正方形.
一种方法:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成4+5=9(个)小正方形.
另一种方法:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成6+3=9(个)小正方形.
(2)把一个正方形分割成10个小正方形.
方法:如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加3×2个小正方形,从而分割成4+3×2=10(个)小正方形.
(3)请你参照上述分割方法,把图⑥给出的正方形分割成11个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)
(4)把一个正方形分割成n(n≥9)个小正方形.
方法:通过“基本分割法1”、“基本分割法2”或其组合把一个正方形分割成9个、10个和11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正方形,从而把一个正方形分割成12个、13个、14个小正方形,依次类推,即可把一个正方形分割成n(n≥9)个小正方形.
从上面的分法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成n(n≥9)个小正方形.
类比应用:仿照上面的方法,我们可以把一个正三角形分割成n(n≥9)个小正三角形.
(1)基本分割法1:把一个正三角形分割成4个小正三角形(请你在图a中画出草图);
(2)基本分割法2:把一个正三角形分割成6个小正三角形(请你在图b中画出草图);
(3)分别把图c、图d和图e中的正三角形分割成9个、10个和11个小正三角形(用钢笔或圆珠笔画出草图即可,不用说明分割方法);

(4)请你写出把一个正三角形分割成n(n≥9)个小正三角形的分割方法(只写出分割方法,不用画图).

查看答案和解析>>

我们在解决数学问题时,经常采用“转化”(或“化归”)的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.
譬如,在学习了一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题.
问题提出:如何把一个正方形分割成n(n≥9)个小正方形?
为解决上面问题,我们先来研究两种简单的“基本分割法”.
基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.
基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.

问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n(n≥9)个小正方形.
(1)把一个正方形分割成9个小正方形.
一种方法:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成4+5=9(个)小正方形.
另一种方法:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成6+3=9(个)小正方形.
(2)把一个正方形分割成10个小正方形.
方法:如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加3×2个小正方形,从而分割成4+3×2=10(个)小正方形.
(3)请你参照上述分割方法,把图⑥给出的正方形分割成11个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)
(4)把一个正方形分割成n(n≥9)个小正方形.
方法:通过“基本分割法1”、“基本分割法2”或其组合把一个正方形分割成9个、10个和11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正方形,从而把一个正方形分割成12个、13个、14个小正方形,依此类推,即可把一个正方形分割成n(n≥9)个小正方形.
从上面的分法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成n(n≥9)个小正方形.
类比应用:仿照上面的方法,我们可以把一个正三角形分割成n(n≥9)个小正三角形.
(1)基本分割法1:把一个正三角形分割成4个小正三角形(请你在图a中画出草图);
(2)基本分割法2:把一个正三角形分割成6个小正三角形(请你在图b中画出草图);
(3)分别把图c、图d和图e中的正三角形分割成9个、10个和11个小正三角形(用钢笔或圆珠笔画出草图即可,不用说明分割方法);

(4)请你写出把一个正三角形分割成n(n≥9)个小正三角形的分割方法(只写出分割方法,不用画图).

查看答案和解析>>

(2009•青岛)我们在解决数学问题时,经常采用“转化”(或“化归”)的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.
譬如,在学习了一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题.
问题提出:如何把一个正方形分割成n(n≥9)个小正方形?
为解决上面问题,我们先来研究两种简单的“基本分割法”.
基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.
基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.

问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n(n≥9)个小正方形.
(1)把一个正方形分割成9个小正方形.
一种方法:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成4+5=9(个)小正方形.
另一种方法:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成6+3=9(个)小正方形.
(2)把一个正方形分割成10个小正方形.
方法:如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加3×2个小正方形,从而分割成4+3×2=10(个)小正方形.
(3)请你参照上述分割方法,把图⑥给出的正方形分割成11个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)
(4)把一个正方形分割成n(n≥9)个小正方形.
方法:通过“基本分割法1”、“基本分割法2”或其组合把一个正方形分割成9个、10个和11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正方形,从而把一个正方形分割成12个、13个、14个小正方形,依此类推,即可把一个正方形分割成n(n≥9)个小正方形.
从上面的分法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成n(n≥9)个小正方形.
类比应用:仿照上面的方法,我们可以把一个正三角形分割成n(n≥9)个小正三角形.
(1)基本分割法1:把一个正三角形分割成4个小正三角形(请你在图a中画出草图);
(2)基本分割法2:把一个正三角形分割成6个小正三角形(请你在图b中画出草图);
(3)分别把图c、图d和图e中的正三角形分割成9个、10个和11个小正三角形(用钢笔或圆珠笔画出草图即可,不用说明分割方法);

(4)请你写出把一个正三角形分割成n(n≥9)个小正三角形的分割方法(只写出分割方法,不用画图).

查看答案和解析>>

我们在解决数学问题时,经常采用“转化”(或“化归”)的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.

譬如,在学习了一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题.

问题提出:如何把一个正方形分割成)个小正方形?

为解决上面问题,我们先来研究两种简单的“基本分割法”.

基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.

基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.

 


问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成)个小正方形.

(1)把一个正方形分割成9个小正方形.

一种方法:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成(个)小正方形.

另一种方法:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成(个)小正方形.

(2)把一个正方形分割成10个小正方形.

方法:如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加个小正方形,从而分割成(个)小正方形.

(3)请你参照上述分割方法,把图⑥给出的正方形分割成11个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)

(4)把一个正方形分割成)个小正方形.

方法:通过“基本分割法1”、“基本分割法2”或其组合把一个正方形分割成9个、10个和11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正方形,从而把一个正方形分割成12个、13个、14个小正方形,依次类推,即可把一个正方形分割成)个小正方形.

从上面的分法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成)个小正方形.

类比应用:仿照上面的方法,我们可以把一个正三角形分割成)个小正三角形.

(1)基本分割法1:把一个正三角形分割成4个小正三角形(请你在图a 中画出草图).

(2)基本分割法2:把一个正三角形分割成6个小正三角形(请你在图b 中画出草图).

(3)分别把图c、图d和图e中的正三角形分割成9个、10个和11个小正三角形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)

 


(4)请你写出把一个正三角形分割成)个小正三角形的分割方法(只写出分割方法,不用画图).

查看答案和解析>>

我们在解决数学问题时,经常采用“转化”(或“化归”)的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题。
譬如,在学习了一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题。
问题提出:如何把一个正方形分割成n(n≥9)个小正方形?
为解决上面问题,我们先来研究两种简单的“基本分割法”,
基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形。
基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形。

问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n(n≥9)个小正方形。
(1)把一个正方形分割成9个小正方形,
一种方法:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成4+5=9(个)小正方形。
另一种方法:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成6+3=9(个)小正方形。
(2)把一个正方形分割成10个小正方形,
方法:如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加3×2个小正方形,从而分割成4+3×2=10(个)小正方形。
(3)请你参照上述分割方法,把图⑥给出的正方形分割成11个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法).
(4)把一个正方形分割成n(n≥9)个小正方形,
方法:通过“基本分割法1”、“基本分割法2”或其组合把一个正方形分割成9个、10个和11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正方形,从而把一个正方形分割成12个、13个、14个小正方形,依次类推,即可把一个正方形分割成n(n≥9)个小正方形.从上面的分法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成n(n≥9)个小正方形。
类比应用:仿照上面的方法,我们可以把一个正三角形分割成n(n≥9)个小正三角形。
(1)基本分割法1:把一个正三角形分割成4个小正三角形(请你在图a中画出草图);
(2)基本分割法2:把一个正三角形分割成6个小正三角形(请你在图b中画出草图);
(3)分别把图c、图d和图e中的正三角形分割成9个、10个和11个小正三角形(用钢笔或圆珠笔画出草图即可,不用说明分割方法);
(4)请你写出把一个正三角形分割成n(n≥9)个小正三角形的分割方法(只写出分割方法,不用画图)。

查看答案和解析>>


同步练习册答案