显然.所求表达式为IQ∩P=. 查看更多

 

题目列表(包括答案和解析)

如图所示,ABCD为正方形,P是ABCD所在平面外一点,P在平面ABCD上的射影恰好是正方形的中心O,Q是CD的中点,求下列各题中x,y的值.

(1);

(2).

查看答案和解析>>

如下图,已知双曲线C1的方程为=1(a>0,b>0),A、B为其左、右两个顶点,P是双曲线C1上的任意一点,引QB⊥PB,QA⊥PA,AQ与BQ交于点Q.

(1)求Q点的轨迹方程;

(2)设(1)中所求轨迹为C2,C1、C2的离心率分别为e1、e2,当e1时,求e2的取值范围.

查看答案和解析>>

(2009•中山模拟)用流程线将下列图形符号:

连接成一个求实数x的绝对值的程序框图.则所求框图为

查看答案和解析>>

 两个盒内分别盛着写有0,1,2,3,4,5六个数字的六张卡片,若从每盒中各取一张,求所取两数之和等于6的概率,现有甲、乙两人分别给出的一种解法:

甲的解法:因为两数之和可有0,1,2,…,10共11种不同的结果,所以所求概率为

乙的解法:从每盒中各取一张卡片,共有36种取法,其中和为6的情况有5种:(1,5)、(5,1)、(2,4)、(4,2)、(3,3)因此所求概率为

试问哪一种解法正确?为什么?

 

查看答案和解析>>

若某产品的直径长与标准值的差的绝对值不超过1mm 时,则视为合格品,否则视为不合格品。在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品。计算这50件不合格品的直径长与标准值的差(单位:mm), 将所得数据分组,得到如下频率分布表:

分组

频数

频率

[-3, -2)

 

0.10

[-2, -1)

8

 

(1,2]

 

0.50

(2,3]

10

 

(3,4]

 

 

合计

50

1.00

(Ⅰ)将上面表格中缺少的数据填在答题卡的相应位置;

(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;

(Ⅲ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品。据此估算这批产品中的合格品的件数。

【解析】(Ⅰ)

分组

频数

频率

[-3, -2)

 5

0.10

[-2, -1)

8

0.16 

(1,2]

 25

0.50

(2,3]

10

0.2

(3,4]

 2

0.04

合计

50

1.00

(Ⅱ)根据频率分布表可知,落在区间(1,3]内频数为35,故所求概率为0.7.

(Ⅲ)由题可知不合格的概率为0.01,故可求得这批产品总共有2000,故合格的产品有1980件。

 

查看答案和解析>>


同步练习册答案