解:(1)如图所示... ∴. ------------1分 又. ∴. ---3分 (2).∴∠D1FO=60°. .∴. ··················· 4分 又..∴. .∴.··············· 5分 又.∴. 在中..········· 6分 (3)点在内部. ····················· 7分 理由如下:设交于点P.则. 在中.. ----········· 9分 .即.∴点在内部. -----10分 查看更多

 

题目列表(包括答案和解析)

如图,A、B、C分别表示面积为9、10、11的三个圆.已知三个圆所覆盖的总面积为20.A与B、B与C、C与A每两圆公共部分所覆盖面积分别为5、4、3,求A、B、C三个圆公共部分所覆盖的面积.

探索发现:
我们把三个圆所覆盖的总面积记为A∨B∨C;每两圆公共部分所覆盖的面积记为AB、BC、CA;三个圆公共部分所覆盖的面积记为ABC.根据题意,有:
(1)三个圆的面积和为:A+B+C=______;
(2)重合部分覆盖的面积为(A+B+C)-A∨B∨C=______;
(3)每两圆公告部分所覆盖的面积和为:AB+BC+CA=______;
(4)三个圆公共部分所覆盖的面积:ABC=______.
总结归纳:
利用上题中规定的符号和解答过程,补全等式:ABC=______.
利用上述方法得到的启示,解决下面的问题:
某年级共有74名学生参加课外小组.其中,参加球类的有34人,参加棋类的有32人,参加田径类的有30人;既参加球类又参加棋类的有7人,既参加棋类又参加田径类的有8人,既参加田径类又参加球类的有10人.求三个小组都参加的人数.

查看答案和解析>>

如图,A、B、C分别表示面积为9、10、11的三个圆.已知三个圆所覆盖的总面积为20.A与B、B与C、C与A每两圆公共部分所覆盖面积分别为5、4、3,求A、B、C三个圆公共部分所覆盖的面积.

探索发现:
我们把三个圆所覆盖的总面积记为A∨B∨C;每两圆公共部分所覆盖的面积记为AB、BC、CA;三个圆公共部分所覆盖的面积记为ABC.根据题意,有:
(1)三个圆的面积和为:A+B+C=______;
(2)重合部分覆盖的面积为(A+B+C)-A∨B∨C=______;
(3)每两圆公告部分所覆盖的面积和为:AB+BC+CA=______;
(4)三个圆公共部分所覆盖的面积:ABC=______.
总结归纳:
利用上题中规定的符号和解答过程,补全等式:ABC=______.
利用上述方法得到的启示,解决下面的问题:
某年级共有74名学生参加课外小组.其中,参加球类的有34人,参加棋类的有32人,参加田径类的有30人;既参加球类又参加棋类的有7人,既参加棋类又参加田径类的有8人,既参加田径类又参加球类的有10人.求三个小组都参加的人数.

查看答案和解析>>

(2010•保定一模)如图,A、B、C分别表示面积为9、10、11的三个圆.已知三个圆所覆盖的总面积为20.A与B、B与C、C与A每两圆公共部分所覆盖面积分别为5、4、3,求A、B、C三个圆公共部分所覆盖的面积.

探索发现:
我们把三个圆所覆盖的总面积记为A∨B∨C;每两圆公共部分所覆盖的面积记为AB、BC、CA;三个圆公共部分所覆盖的面积记为ABC.根据题意,有:
(1)三个圆的面积和为:A+B+C=
30
30

(2)重合部分覆盖的面积为(A+B+C)-A∨B∨C=
10
10

(3)每两圆公告部分所覆盖的面积和为:AB+BC+CA=
12
12

(4)三个圆公共部分所覆盖的面积:ABC=
2
2

总结归纳:
利用上题中规定的符号和解答过程,补全等式:ABC=
AB+BC+CA+A∨B∨C-(A+B+C)
AB+BC+CA+A∨B∨C-(A+B+C)

利用上述方法得到的启示,解决下面的问题:
某年级共有74名学生参加课外小组.其中,参加球类的有34人,参加棋类的有32人,参加田径类的有30人;既参加球类又参加棋类的有7人,既参加棋类又参加田径类的有8人,既参加田径类又参加球类的有10人.求三个小组都参加的人数.

查看答案和解析>>

数学作业本发下来了,徐波想“我应该又是满分吧”,翻开作业本,一个大红的错号映入眼帘,徐波不解了,“我哪里做错了呢”下面就是徐波的解法,亲爱的同学,你知道他哪儿错了吗?你能帮他进行正确的说明吗?精英家教网
如图所示,∠BAC是钝角,AB=AC,D,E分别在AB,AC上,且CD=BE.
试说明∠ADC=∠AEB.
徐波的解法:
在△ACD和△ABE中,
AB=AC(已知)
BE=CD(已知)
∠BAE=∠CAD(公共角)

所以△ABE≌△ACD,所以∠ADC=∠AEB.

查看答案和解析>>

数学作业本发下来了,徐波想“我应该又是满分吧”,翻开作业本,一个大红的错号映入眼帘,徐波不解了,“我哪里做错了呢”下面就是徐波的解法,亲爱的同学,你知道他哪儿错了吗?你能帮他进行正确的说明吗?
如图所示,∠BAC是钝角,AB=AC,D,E分别在AB,AC上,且CD=BE.
试说明∠ADC=∠AEB.
徐波的解法:
在△ACD和△ABE中,数学公式
所以△ABE≌△ACD,所以∠ADC=∠AEB.

查看答案和解析>>


同步练习册答案