.解:(1) ∵四边形为正方形 ∴ ∵..在同一条直线上 ∴ ∴直线与⊙相切, (2)直线与⊙相切分两种情况: ①如图1, 设点在第二象限时,过作轴于点,设此时的正方形的边长为,则,解得或. 由∽ 得 ∴ ∴.故直线的函数关系式为, ②如图2, 设点在第四象限时,过作轴于点,设此时的正方形的边长为,则,解得或. 由∽ 得 ∴ ∴.故直线的函数关系式为. (3)设,则,由得 ∴ ∵ ∴. 查看更多

 

题目列表(包括答案和解析)

对同一图形,从不同的角度看就会有不同的发现,请根据右图解决以下问题:
(1)如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,分别以AB、AC所在的直线为对称轴,作出△ABD、△ACD的轴对称图形,点D的对称点分别为E、F,延长EB、FC相交于G点,试证明四边形AEGF是正方形;
(2)如图,在边长为12cm的正方形AEFG中,点B是边EG上一点,将边AE、AF分别沿AB、AC向内翻折至AD处,则点B、D、C在一条直线上,若EB=4cm,求△ABC的面积.

查看答案和解析>>

对同一图形,从不同的角度看就会有不同的发现,请根据右图解决以下问题:
(1)如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,分别以AB、AC所在的直线为对称轴,作出△ABD、△ACD的轴对称图形,点D的对称点分别为E、F,延长EB、FC相交于G点,试证明四边形AEGF是正方形;
(2)如图,在边长为12cm的正方形AEFG中,点B是边EG上一点,将边AE、AF分别沿AB、AC向内翻折至AD处,则点B、D、C在一条直线上,若EB=4cm,求△ABC的面积.

查看答案和解析>>

对同一图形,从不同的角度看就会有不同的发现,请根据右图解决以下问题:
(1)如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,分别以AB、AC所在的直线为对称轴,作出△ABD、△ACD的轴对称图形,点D的对称点分别为E、F,延长EB、FC相交于G点,试证明四边形AEGF是正方形;
(2)如图,在边长为12cm的正方形AEFG中,点B是边EG上一点,将边AE、AF分别沿AB、AC向内翻折至AD处,则点B、D、C在一条直线上,若EB=4cm,求△ABC的面积.

查看答案和解析>>

阅读与证明:
如图,已知正方形ABCD中,E、F分别是CD、BC上的点,且∠EAF=45°,

求证:BF+DE=EF.
分析:证明一条线段等于另两条线段的和,常用“截长法”或“补短法”,将线段BF、DE放在同一直线上,构造出一条与BF+DE相等的线段.如图1延长ED至点F′,使DF′=BF,连接A F′,易证△ABF≌△ADF′,进一步证明△AEF≌△AEF′,即可得结论.
(1)请你将下面的证明过程补充完整.
证明:延长ED至F′,使DF′=BF,
∵四边形ABCD是正方形
∴AB=AD,∠ABF=∠ADF′=90°,
∴△ABF≌△ADF’(SAS)
应用与拓展:如图建立平面直角坐标系,使顶点A与坐标原点O重合,边OB、OD分别在x轴、y轴的正半轴上.
(2)设正方形边长OB为30,当E为CD中点时,试问F为BC的几等分点?并求此时F点的坐标;
(3)设正方形边长OB为30,当EF最短时,直接写出直线EF的解析式:______.

查看答案和解析>>

阅读与证明:
如图,已知正方形ABCD中,E、F分别是CD、BC上的点,且∠EAF=45°,

求证:BF+DE=EF.
分析:证明一条线段等于另两条线段的和,常用“截长法”或“补短法”,将线段BF、DE放在同一直线上,构造出一条与BF+DE相等的线段.如图1延长ED至点F′,使DF′=BF,连接A F′,易证△ABF≌△ADF′,进一步证明△AEF≌△AEF′,即可得结论.
(1)请你将下面的证明过程补充完整.
证明:延长ED至F′,使DF′=BF,
∵四边形ABCD是正方形
∴AB=AD,∠ABF=∠ADF′=90°,
∴△ABF≌△ADF’(SAS)
应用与拓展:如图建立平面直角坐标系,使顶点A与坐标原点O重合,边OB、OD分别在x轴、y轴的正半轴上.
(2)设正方形边长OB为30,当E为CD中点时,试问F为BC的几等分点?并求此时F点的坐标;
(3)设正方形边长OB为30,当EF最短时,直接写出直线EF的解析式:______

查看答案和解析>>


同步练习册答案