1.引例 (3)同位角不相等.两直线不平行, (4)两直线不平行.同位角不相等. 比较命题的条件与结论的异同(学生回答.教师整理补充) 在命题中.一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定.我们称命题互为否命题, 在命题中.一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定.我们称命题互为逆否命题, 思考:由原命题怎么得到逆命题.否命题.逆否命题? (学生回答.教师整理补充) 交换原命题的条件和结论.所得的命题是逆命题, 同时否定原命题的条件和结论.所得的命题是否命题, 交换原命题的条件和结论.并且同时否定.所得的命题是逆否命题. 查看更多

 

题目列表(包括答案和解析)

几位同学对三元一次方程组
a1x+b1y+c1z=d1
a2x+b2y+c2z=d2
a3x+b3y+c3z=d3
(其中系数ai,bi,ci(i=1,2,3)不全为零)    的解的情况进行研究后得到下列结论:
结论一:当D=0,且Dx=Dy=Dz=0时,方程组有无穷多解;
结论二:当D=0,且Dx,Dy,Dz都不为零时,方程组有无穷多解;
结论三:当D=0,且Dx=Dy=Dz=0时,方程组无解.
可惜的是这些结论都不正确.现在请你分析一下,下面给出的方程组可以作为结论一、二、三的反例分别是(  )
(1)
x+2y+3z=0
x+2y+3z=1
x+2y+3z=2
;  (2)
x+2y=0
x+2y+z=0
2x+4y=0
;  (3)
2x+y=1
-x+2y+z=0
x+3y+z=2

查看答案和解析>>

下列有关命题的说法错误的是(  )

查看答案和解析>>

对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:
①f(x)在[m,n]内是单调函数;
②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.
(1)求证:函数y=g(x)=3-
5
x
不存在“和谐区间”.
(2)已知:函数y=
(a2+a)x-1
a2x
(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n-m的最大值.
(3)易知,函数y=x是以任一区间[m,n]为它的“和谐区间”.试再举一例有“和谐区间”的函数,并写出它的一个“和谐区间”.(不需证明,但不能用本题已讨论过的y=x及形如y=
bx+c
ax
的函数为例)

查看答案和解析>>

4、有下列四个命题
①命题“同位角相等,两直线平行”的逆否命题为:“两直线不平行,同位角不相等”.
②“x=1”是“x2-4x+3=0”的充分必要条件.
③若p∧q为假命题,则p、q均为假命题.
④对于命题p:?x0∈R,x02+2x0+2≤0,则?p:?x∈R,x2+2x+2>0.
其中正确是(  )

查看答案和解析>>

设函数f(x)的定义域为D,若存在x0∈D,使f(x0)=x0成立,则称以(x0,x0)为坐标的点为函数f(x)图象上的不动点.
(1)若函数f(x)=
3x+ax+b
图象上有两个关于原点对称的不动点,求a,b应满足的条件;
(2)在(1)的条件下,若a=8,记函数f(x)图象上的两个不动点分别为A、B,点M为函数图象上的另一点,且其纵坐标yM>3,求点M到直线AB距离的最小值及取得最小值时M点的坐标;
(3)下述命题“若定义在R上的奇函数f(x)图象上存在有限个不动点,则不动点的有奇数个”是否正确?若正确,给出证明,并举一例;若不正确,请举一反例说明.

查看答案和解析>>


同步练习册答案