17.甲.乙两人进行投篮训练.已知甲投球命中的概率是.乙投球命中的概率是.假设两人投球命中与否相互之间没有影响. (1)如果两人各投球1次.求恰有1人投球命中的概率, (2)如果两人各投球2次.求这4次投球中至少有1次命中的概率. 解:(1)记“甲投球1次命中 为事件A.“乙投球1次命中 为事件B.根据互斥事件的概率加法公式和相互独立事件的概率乘法公式.所求的概率是P(A·)+P(B·)=P(A)·P()+P()·P(B)=××=. (2)∵事件“两人各投球2次均不命中 的概率为=×××=. ∴两人各投球2次.这4次投球中至少有1次命中的概率为1-=. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)某篮球队教练要从甲、乙两名运动员中挑选一名运动员,甲、乙两人进行10轮投篮比赛,每轮每人投10次,甲每轮投中的次数分别为9、7、8、7、8、10、7、9、8、7,乙每轮投中的次数分别为7、8、9、8、7、8、9、8、9、7,分别计算两个样本的平均数和标准差,并根据计算结果估计哪位运动员的成绩比较稳定。

查看答案和解析>>

(本小题满分12分)某篮球队教练要从甲、乙两名运动员中挑选一名运动员,甲、乙两人进行10轮投篮比赛,每轮每人投10次,甲每轮投中的次数分别为9、7、8、7、8、10、7、9、8、7,乙每轮投中的次数分别为7、8、9、8、7、8、9、8、9、7,请你给教练一个人选的建议。

查看答案和解析>>

(本小题满分13分)

某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.

(I) 求这次铅球测试成绩合格的人数;

(II) 用此次测试结果估计全市毕业生的情况.若从                       今年的高中毕业生中随机抽取两名,记表示两人中成绩不合格的人数,求的分布列及数学期望;

(III) 经过多次测试后,甲成绩在8~10米之间,乙成绩在9.5~10.5米之间,现甲、乙各投掷一次,求甲比乙投掷远的概率.

查看答案和解析>>

(本小题满分12分)

某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.

(1) 求这次铅球测试成绩合格的人数;

(2) 用此次测试结果估计全市毕业生的情况.若从今年的高中毕业生中随机抽取两名,记表示两人中成绩不合格的人数,求的分布列及数学期望;

(3) 经过多次测试后,甲成绩在8~10米之间,乙成绩在9.5~10.5米之间,现甲、乙各投掷一次,求甲比乙投掷远的概率.

查看答案和解析>>

(本小题满分12分)

某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.

(1) 求这次铅球测试成绩合格的人数;

(2) 用此次测试结果估计全市毕业生的情况.若从今年的高中毕业生中随机抽取两名,记表示两人中成绩不合格的人数,求的分布列及数学期望;

(3) 经过多次测试后,甲成绩在8~10米之间,乙成绩在9.5~10.5米之间,现甲、乙各投掷一次,求甲比乙投掷远的概率.

查看答案和解析>>


同步练习册答案