积分(1)定积分的定义:.a与b分别叫做积分下限与积分上限.区间[a.b]叫做积分区间.函数f(x)叫做被积函数.x叫做积分变量.f(x)dx叫做被积式. 基本的积分公式:=C,=+C(m∈Q. m≠-1),dx=ln+C,=+C,=+C,=sinx+C,=-cosx+C(表中C均为常数). (2)定积分的性质 ①(k为常数),②, ③(其中a<c<b. (3)定积分求曲边梯形面积, 由三条直线x=a.x=b(a<b).x轴及一条曲线y=f(x)(f(x)≥0)围成的曲边梯的面积. 如果图形由曲线y1=f1(x).y2=f2(x)(不妨设f1(x)≥f2(x)≥0).及直线x=a.x=b(a<b)围成.那么所求图形的面积S=S曲边梯形AMNB-S曲边梯形DMNC= (4)几何意义是在区间上的曲线与x轴所围成的图形面积的代数和 微积分基本定理: 查看更多

 

题目列表(包括答案和解析)

定义:在直角坐标系中,若不在一直线上的三点A、B、C的坐标分别为(x1,y1)、(x2,y2)、(x3,y3),则三角形ABC的面积可以表示为S△ABC=|
1
2
.
x1 y1  1
x2y2     1
x3y3    1
.
|
.已知抛物线y2=4x,过抛物线焦点F斜率为
4
3
的直线l与抛物线交于A、B两点.
(1)求A、B两点的坐标;
(2)若P(3,0),试用行列式计算三角形面积的方法求四边形APBO的面积S.

查看答案和解析>>

定义:在直角坐标系中,若不在一直线上的三点A、B、C的坐标分别为(x1,y1)、(x2,y2)、(x3,y3),则三角形ABC的面积可以表示为S△ABC=|
1
2
.
x1 y1  1
x2y2     1
x3y3    1
.
|
.已知抛物线y2=4x,过抛物线焦点F斜率为
4
3
的直线l与抛物线交于A、B两点.
(1)求A、B两点的坐标;
(2)若P(3,0),试用行列式计算三角形面积的方法求四边形APBO的面积S.

查看答案和解析>>

定义:在直角坐标系中,若不在一直线上的三点A、B、C的坐标分别为(x1,y1)、(x2,y2)、(x3,y3),则三角形ABC的面积可以表示为S△ABC=.已知抛物线y2=4x,过抛物线焦点F斜率为的直线l与抛物线交于A、B两点.
(1)求A、B两点的坐标;
(2)若P(3,0),试用行列式计算三角形面积的方法求四边形APBO的面积S.

查看答案和解析>>

(2013•海口二模)定义:若两个椭圆的离心率相等,则称两个椭圆是“相似”的. 如图,椭圆C1与椭圆C2是相似的两个椭圆,并且相交于上下两个顶点.椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长是4,椭圆C2
y2
m2
+
x2
n2
=1(m>n>0)
短轴长是1,点F1,F2分别是椭圆C1的左焦点与右焦点,
(Ⅰ)求椭圆C1,C2的方程;
(Ⅱ)过F1的直线交椭圆C2于点M,N,求△F2MN面积的最大值.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点(
3
3
2
),椭圆C左右焦点分别为F1,F2,上顶点为E,△EF1F2为等边三角形.定义椭圆C上的点M(x0,y0)的“伴随点”为N(
x0
a
y0
b
).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆C1的方程为(x+2a)2+y2=a2,圆C1和x轴相交于A,B两点,点P为圆C1上不同于A,B的任意一点,直线PA,PB交y轴于S,T两点.当点P变化时,以ST为直径的圆C2是否经过圆C1内一定点?请证明你的结论;
(Ⅲ)直线l交椭圆C于H、J两点,若点H、J的“伴随点”分别是L、Q,且以LQ为直径的圆经过坐标原点O.椭圆C的右顶点为D,试探究△OHJ的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>


同步练习册答案