圆锥曲线焦点位置的判断(首先化成标准方程.然后再判断): (1)椭圆:由,分母的大小决定.焦点在分母大的坐标轴上.如已知方程表示焦点在y轴上的椭圆.则m的取值范围是 (答:) (2)双曲线:由,项系数的正负决定.焦点在系数为正的坐标轴上, (3)抛物线:焦点在一次项的坐标轴上.一次项的符号决定开口方向. 特别提醒:(1)在求解椭圆.双曲线问题时.首先要判断焦点位置.焦点F.F的位置.是椭圆.双曲线的定位条件.它决定椭圆.双曲线标准方程的类型.而方程中的两个参数.确定椭圆.双曲线的形状和大小.是椭圆.双曲线的定形条件,在求解抛物线问题时.首先要判断开口方向,(2)在椭圆中.最大..在双曲线中.最大.. 查看更多

 

题目列表(包括答案和解析)

(2010•福建模拟)已知抛物线C的顶点在坐标原点,焦点F在x轴上,且过点(1,2).
(Ⅰ)求抛物线C的方程;
(Ⅱ)命题:“过椭圆
x2
25
+
y2
16
=1
的一个焦点F1作与x轴不垂直的任意直线l”交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则
|AB|
|F1M|
为定值,且定值是
10
3
”.命题中涉及了这么几个要素:给定的圆锥曲线T,过该圆锥曲线焦点F1的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F1、M两点间距离的比值.试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明.
(Ⅲ)试推广(Ⅱ)中的命题,写出关于抛物线的一般性命题(不必证明).

查看答案和解析>>

(2010•福建模拟)已知中心的坐标原点,以坐标轴为对称轴的双曲线C过点Q(2,
3
3
)
,且点Q在x轴上的射影恰为该双曲线的一个焦点F1
(Ⅰ)求双曲线C的方程;
(Ⅱ)命题:“过椭圆
x2
25
+
y2
16
=1
的一个焦点F作与x轴不垂直的任意直线l”交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则
|AB|
|FM|
为定值,且定值是
10
3
”.命题中涉及了这么几个要素:给定的圆锥曲线E,过该圆锥曲线焦点F的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F、M两点间距离的比值.试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明
(Ⅲ)试推广(Ⅱ)中的命题,写出关于圆锥曲线(椭圆、双曲线、抛物线)的统一的一般性命题(不必证明).

查看答案和解析>>

(理)过圆锥曲线焦点F的直线被曲线截得的弦称为焦点弦,若抛物线y2=2px(p>0)的焦点将焦点弦分成长为m,n的两段,则有结论
1
m
+
1
n
=
2
p
.借助获得这一结论的思想方法可以得到:若椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
的一个焦点将焦点弦分成长为m,n的两段,则
1
m
+
1
n
=
2a
b2
2a
b2

查看答案和解析>>

已知中心的坐标原点,以坐标轴为对称轴的双曲线C过点,且点Q在x轴上的射影恰为该双曲线的一个焦点F1
(Ⅰ)求双曲线C的方程;
(Ⅱ)命题:“过椭圆的一个焦点F作与x轴不垂直的任意直线l”交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则为定值,且定值是”.命题中涉及了这么几个要素:给定的圆锥曲线E,过该圆锥曲线焦点F的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F、M两点间距离的比值.试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明
(Ⅲ)试推广(Ⅱ)中的命题,写出关于圆锥曲线(椭圆、双曲线、抛物线)的统一的一般性命题(不必证明).

查看答案和解析>>

已知中心在坐标原点,以坐标轴为对称轴的双曲线C过点,且点Q在x轴上的射影恰为该双曲线的一个焦点F,
(Ⅰ)求双曲线C的方程;
(Ⅱ)命题:“过椭圆的一个焦点F作与x轴不垂直的任意直线l交椭圆于A.B两点,线段AB的垂直平分线交x轴于点M,则为定值,且定值是”。命题中涉及了这么几个要素:给定的圆锥曲线E,过该圆锥曲线焦点F的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F,M两点间的距离的比值.
试类比上述命题,写出一个关于双曲线C的类似的正确命题,并加以证明;
(Ⅲ)试推广(Ⅱ)中的命题,写出关于圆锥曲线(椭圆、双曲线、抛物线)的统一的一般性命题(不必证明)。

查看答案和解析>>


同步练习册答案