如图10.平行四边形ABCD中.AB=5.BC=10.BC边上的高AM=4.E为 BC边上的一个动点(不与B.C重合).过E作直线AB的垂线.垂足为F. FE与DC的延长线相交于点G.连结DE.DF.. (1) 求证:ΔBEF ∽ΔCEG. (2) 当点E在线段BC上运动时.△BEF和△CEG的周长之间有什么关系?并说明你的理由. (3)设BE=x.△DEF的面积为 y.请你求出y和x之间的函数关系式.并求出当x为何值时,y有最大值.最大值是多少? (1) 因为四边形ABCD是平行四边形. 所以 1分 所以 所以 ···························································································· 3分 (2)的周长之和为定值.····························································· 4分 理由一: 过点C作FG的平行线交直线AB于H . 因为GF⊥AB.所以四边形FHCG为矩形.所以 FH=CG.FG=CH 因此.的周长之和等于BC+CH+BH 由 BC=10.AB=5.AM=4.可得CH=8.BH=6. 所以BC+CH+BH=24 ···························································································· 6分 理由二: 由AB=5.AM=4.可知 在Rt△BEF与Rt△GCE中.有: . 所以.△BEF的周长是. △ECG的周长是 又BE+CE=10.因此的周长之和是24.·········································· 6分 (3)设BE=x.则 所以 ···································· 8分 配方得:. 所以.当时.y有最大值.············································································· 9分 最大值为.··········································································································· 10分 查看更多

 

题目列表(包括答案和解析)

如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F.
(1)求证:OE∥AB;
(2)求证:EH=
12
AB;
(3)若AD与⊙O也相切,如图二,已知BE(BC)=5,BH=3,求⊙O的半径.
(江苏苏州10年中考27题改编)
精英家教网

查看答案和解析>>

如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F.
(1)求证:OE∥AB;
(2)求证:EH=AB;
(3)若AD与⊙O也相切,如图二,已知BE(BC)=5,BH=3,求⊙O的半径.
(江苏苏州10年中考27题改编)

查看答案和解析>>

已知如27题图,点B、E分别是在AC、DF上的点,且BD、CE均与AF相交,若∠1=∠2,∠C=∠D,试问∠A与∠F相等吗?仿照27题说明理由.

查看答案和解析>>

如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F.
(1)求证:OE∥AB;
(2)求证:EH=AB;
(3)若AD与⊙O也相切,如图二,已知BE(BC)=5,BH=3,求⊙O的半径.
(江苏苏州10年中考27题改编)

查看答案和解析>>

如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F.
(1)求证:OE∥AB;
(2)求证:EH=AB;
(3)若AD与⊙O也相切,如图二,已知BE(BC)=5,BH=3,求⊙O的半径.
(江苏苏州10年中考27题改编)

查看答案和解析>>


同步练习册答案