如图.在平面直角坐标系中.抛物线=-++经过A.B(.0). C(.0)三点.且-=5. (1)求.的值, (2)在抛物线上求一点D.使得四边形BDCE是以BC为对 角线的菱形, (3)在抛物线上是否存在一点P.使得四边形BPOH是以OB为对角线的菱形?若存在.求出点P的坐标.并判断这个菱形是否为正方形?若不存在.请说明理由. 解:(1)解法一: ∵抛物线=-++经过点A. ∴=-4 --1分 又由题意可知..是方程-++=0的两个根. ∴+=. =-=6··································································· 2分 由已知得(-)=25 又(-)=(+)-4=-24 ∴ -24=25 解得=± ··········································································································· 3分 当=时.抛物线与轴的交点在轴的正半轴上.不合题意.舍去. ∴=-. ·········································································································· 4分 解法二:∵.是方程-++c=0的两个根. 即方程2-3+12=0的两个根. ∴=.··········································································· 2分 ∴-==5. 解得 =±······························································································· 3分 (2)∵四边形BDCE是以BC为对角线的菱形.根据菱形的性质.点D必在抛物线的对称轴上. 5分 又∵=---4=-(+)+ ································· 6分 ∴抛物线的顶点(-.)即为所求的点D.······································· 7分 (3)∵四边形BPOH是以OB为对角线的菱形.点B的坐标为. 根据菱形的性质.点P必是直线=-3与 抛物线=---4的交点. ···························································· 8分 ∴当=-3时.=-×(-3)-×(-3)-4=4. ∴在抛物线上存在一点P.使得四边形BPOH为菱形. ·················· 9分 四边形BPOH不能成为正方形.因为如果四边形BPOH为正方形.点P的坐标只能是.但这一点不在抛物线上.······································································································· 10分 查看更多

 

题目列表(包括答案和解析)

一本练习册内有24份练习卷,总共有426道练习题,每份练习卷中有25题或20题或16题.那么这本练习册中有25题的练习卷的份数为(  )
A、1B、2C、3D、4

查看答案和解析>>

一张试卷25题,若做对了一题得4分,做错了一题扣1分,小李做完此卷后得70分,则他做对的题目数是(  )
A、18B、17C、19D、20

查看答案和解析>>

2、本卷第17~25题的9道题中,每道题所赋分数(注:分值依次为6,7,7,8,8,8,9,9,10)的众数和中位数分别是(  )

查看答案和解析>>

9、一张试卷上有25道选择题:对一道题得4分,错一道得-1分,不做得-1分,某同学做完全部25题得70分,那么它做对题数为(  )

查看答案和解析>>

21、有一益智游戏分二阶段进行,其中第二阶段共有25题,答对一题得3分,答错一题扣2分,不作答得0分.若小明已在第一阶段得50分,且第二阶段答对了20题,则下列哪一个分数可能是小明在此益智游戏中所得的总分(  )

查看答案和解析>>


同步练习册答案