王亮同学善于改进学习方法.他发现对解题过程进行回顾反思.效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间与学习收益量的关系如图甲所示.用于回顾反思的时间与学习收益量的关系如图乙所示(其中是抛物线的一部分.为抛物线的顶点).且用于回顾反思的时间不超过用于解题的时间. (1)求王亮解题的学习收益量与用于解题的时间之间的函数关系式.并写出自变量的取值范围, (2)求王亮回顾反思的学习收益量与用于回顾反思的时间之间的函数关系式, (3)王亮如何分配解题和回顾反思的时间.才能使这30分钟的学习收益总量最大? (学习收益总量解题的学习收益量回顾反思的学习收益量) 解:(1)设. 把代入.得. .······································································································ 自变量的取值范围是:.···························································· (2)当时. 设.···················································································· 把代入.得.. .································································· 当时. ············································································································· 即. (3)设王亮用于回顾反思的时间为分钟.学习效益总量为. 则他用于解题的时间为分钟. 当时. .························· 当时..············································································ 当时. .····································································· 随的增大而减小. 当时.. 综合所述.当时..此时.································ 即王亮用于解题的时间为26分钟.用于回顾反思的时间为4分钟时.学习收益总量最大. ······················································································································· 查看更多

 

题目列表(包括答案和解析)

已知n是正整数,pn(xn,yn)是反比例函数y=的图象上的一列点,其中x1=1,x2=2,…,xn=n,记

T1= x1y2,T2= x2y3,…,T8= x8y9;若T1=1,则T1 •T2 • … •T8的值是__________.(08衢州卷第16题改编)

查看答案和解析>>

李明在一次测验中做了2道习题,请你判断他是否都正确,若有不正确,请在答题卷相应题号后写上不正确,并写出正确的解答;若正确,则只在答题卷的相应题号后写上“正确”即可
(1)解不等式组
1-
x+1
3
≥0(1)
3-4(x-1)<1(2)

由(1)得x≤2;
由(2)得x>
3
2

3
2
<x≤2

(2)计算
4
+(
1
2
)-1-2cos60°+(2-π)0

=2+2-1+1=4.

查看答案和解析>>

20、为了了解初三年级某次数学考试成绩情况,教导处对该年级若干名学生的成绩进行了抽查(满分100分,分数取整数).将所得数据整理后,画出了频率分布直方图的一部分(如图).所有数据共分六组.已知第一、二、四、五、六这五个分数段的频率分别是0.04,0.08,0.28,0.24,0.12,第二小组的频数是4.
(1)补全频率分布直方图;
(2)这次被抽查的学生人数是多少?
(3)被抽查的学生中,及格率是多少?(大于、等于60分为及格)

查看答案和解析>>

李明在一次测验中做了3道习题,请你判断他是否都正确,若有不正确,请在答题卷相应题号后写上不正确,并写出正确的解答;若正确,则只在答题卷的相应题号后写上“正确”即可.
①化简(
1
1-x
-
1
1+x
)÷(
x
x2-1
+x)

=
1+x-1+x
1-x2
×
x2-1
x
+
1+x-1+x
1-x2
×
1
x
=-2+
2
1-x2
=
2x2
1-x2

②解不等式组
1-
x+1
3
≥0(1)
3-4(x-1)<1(2)
由(1)得x≤2;  由(2)得x>
3
2

3
2
<x≤2

③计算
4
+(
1
2
)-1-2cos60°+(2-π)0
=2+2-1+1=4.

查看答案和解析>>

(2012•泰州一模)王老师对本校九年级学生期中数学测试的成绩,进行统计分析:
(1)王老师通过计算得出九(1)班,选择题的平均得分是23.2分,填空题的平均得分是26.2分,解答题的得分是82.6分.则九(1)班数学平均得分是多少?(试题共三种题型)
(2)王老师对解答题第28题的得分进行了抽样调查,将所得分数x分为三级:A级:x≥8,B级:4≤x<8;C级:0≤x<4,并将调查结果绘制成图①和图②的统计图(不完整).
请根据图中提供的信息,解答下列问题:
①此次抽样调查中,共调查了
200
200
名学生,将图①补充完整;
②求出图②中C级所占的圆心角的度数;
③根据抽样调查结果,请你估计我校1200名九年级学生中大约共有多少名学生对28题的解答达到A级和B级?

查看答案和解析>>


同步练习册答案