19.设函数f(x)=–x3+2ax2–3a2x+b.其中0<a<1.b∈R. (1)求函数f(x)的的单调区间和极值, (2)若当x∈[a+1.a+2]时.恒有f′(x)≥–a.试确定a的取值范围. 查看更多

 

题目列表(包括答案和解析)

P1是椭圆+y2=1(a>0且a≠1)上不与顶点重合的任一点,P1P2是垂直于x轴的弦,A1(-a,0),A2(a,0)是椭圆的两个顶点,直线A1P1与直线A2P2的交点为P.

(1)求点P的轨迹曲线C的方程;

(2)设曲线C与直线l:x+y=1相交于两个不同的点A、B,求曲线C的离心率e的取值范围;

(3)设曲线C与直线l:x+y=1相交于两个不同的点A、B,O为坐标原点,且=-3,求a的值.

(文)(本小题满分12分)设函数f(x)=x3+2ax2-3a2x+a(0<a<1).

(1)求函数f(x)的单调区间;

(2)若当x∈[a,2]时,恒有f(x)≤0,试确定实数a的取值范围.

查看答案和解析>>


同步练习册答案