题目列表(包括答案和解析)
已知等差数列{an}的首项为4,公差为4,其前n项和为Sn,则数列 {
}的前n项和为( )
|
| A. |
| B. |
| C. |
| D. |
|
| 考点: | 数列的求和;等差数列的性质. |
| 专题: | 等差数列与等比数列. |
| 分析: | 利用等差数列的前n项和即可得出Sn,再利用“裂项求和”即可得出数列 { |
| 解答: | 解:∵Sn=4n+ ∴ ∴数列 { 故选A. |
| 点评: | 熟练掌握等差数列的前n项和公式、“裂项求和”是解题的关键. |
| 利用时间充分 | 利用时间不充分 | 总计 | |
| 走读生 | 50 | 25 | 75 |
| 住宿生 | 10 | 15 | 25 |
| 总计 | 60 | 40 | 100 |
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
| 利用时间充分 | 利用时间不充分 | 合计 | |
| 走读生 | 50 | a | 75 75 |
| 住校生 | b | 15 | 25 25 |
| 合计 | 60 60 |
40 | n |
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
P(K2≥k0) |
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
| 利用时间充分 | 利用时间不充分 | 总计 | |
| 走读生 | 50 | 25 | 75 |
| 住宿生 | 10 | 15 | 25 |
| 总计 | 60 | 40 | 100 |
| n(n11n22-n12n21)2 |
| (n22+n21)(n11+n12)(n11+n21)(n12+n21) |
| 利用时间充分 | 利用时间不充分 | 总计 | |
| 走读生 | 50 | 25 | 75 |
| 住宿生 | 10 | 15 | 25 |
| 总计 | 60 | 40 | 100 |
| P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com