已知△ABC的面积S满足≤S≤3.且·=6.AB与BC的夹角为θ. (1)求θ的取值范围, (2)求函数f(θ)=sin2θ+2sinθcosθ+3cos2θ的最小值. 解:(1)由题意知: ·=| || |cosθ=6. ① S=| || |sin(π-θ) =| || |sinθ. ② ②÷①得=tanθ.即3tanθ=S. 由≤S≤3.得≤3tanθ≤3.即≤tanθ≤1. 又θ为与的夹角. ∴θ∈[0.π].∴θ∈[.]. (2)f(θ)=sin2θ+2sinθcosθ+3cos2θ =1+sin2θ+2cos2θ =2+sin2θ+cos2θ =2+sin(2θ+). ∵θ∈[.].∴2θ+∈[.]. ∴当2θ+=.θ=时.f(θ)取最小值3. 查看更多

 

题目列表(包括答案和解析)


(本题满分14分)已知共线,其中A是△ABC的内角.
(1)求角A的大小;
(2)若BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.

查看答案和解析>>


(本题满分14分)已知共线,其中A是△ABC的内角.
(1)求角A的大小;
(2)若BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.

查看答案和解析>>

 

(本题满分14分)已知共线,其中AABC的内角

(1)求角A的大小;

(2)若BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.

 

 

查看答案和解析>>

(本题满分14分)已知共线,其中A是△ABC的内角.

(1)求角A的大小;

(2)若BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.

查看答案和解析>>

(本题满分14分)已知共线,其中A是△ABC的内角.

(1)求角A的大小;

(2)若BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.

查看答案和解析>>


同步练习册答案