交.切.离 例2:. =.相切.(3)>.相离, 查看更多

 

题目列表(包括答案和解析)

已知⊙O1和⊙O2的半径是一元二次方程x2-5x+6=0的两根,若圆心距O1O2=5,则⊙O1和⊙O2的位置关系是【    】

A.外离       B.外切       C.相交       D.内切

 

查看答案和解析>>

已知⊙O1与⊙O2的半径分别为3和4,若圆心距O1O2=1,则两圆的位置关系是(   ▲ )

A.相交             B.相离         C.内切           D.外切

 

查看答案和解析>>

若两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为

A.外离    B.外切    C.相交    D.内切

 

查看答案和解析>>

阅读下列材料:如图,⊙O1和⊙O2外切于点CAB是⊙O1和⊙O2的外公切线,AB为切点,求证:ACBC.

  证实:过点C作⊙O1和⊙O2的内公切线交AB于D.

  ∵ DADC是⊙O1的切线,∴ DADC.

  ∴ ∠DAC=∠DCA.同理∠DCB=∠DBC.

  又∵ ∠DAC+∠DCA+∠DCB+∠DBC=180°,∴ ∠DCA+∠DCB=90°.

  即ACBC.

  根据上述材料,解答下列问题:

  (1)在以上的证实过程中使用了哪些定理?请写出两个定理的名称或内容;

  (2)以AB所在直线为x轴,过点C且垂直于AB的直线为y轴建立直角坐标系(如图11).已知AB两点的坐标为(-4,0)、(1,0),求经过ABC三点的抛物线yax2+bxc的函数解析式;

  (3)根据(2)中所确定的抛物线,试判定这条抛物线的顶点是否落在两圆的连心O1O2上,并说明理由.

查看答案和解析>>

阅读下列材料:
  我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d=数学公式

  例:求点P(1,2)到直线y=数学公式x-数学公式的距离d时,先将y=数学公式化为5x-12y-2=0,再由上述距离公式求得d=数学公式=数学公式
  解答下列问题:
  如图2,已知直线y=-数学公式与x轴交于点A,与y轴交于点B,抛物线y=x2-4x+5上的一点M(3,2).
  (1)求点M到直线AB的距离.
  (2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案