不同函数模型能够刻画现实世界不同的变化规律.指数函数.对数函数以及幂函数就是常用的现实世界中不同增长规律的函数模型. 查看更多

 

题目列表(包括答案和解析)

18、如图给出了某种豆类生长枝数y(枝)与时间t(月)的散点图,那么此种豆类生长枝数与时间的关系用下列函数模型近似刻画最好的是(  )

查看答案和解析>>

如图给出了某种豆类生长枝数y(枝)与时间t(月)的散点图,那么此种豆类生长枝数与时间的关系用下列函数模型近似刻画最好的是( )

A.y=2t2
B.y=log2t
C.y=t3
D.y=2t

查看答案和解析>>

如图给出了某种豆类生长枝数y(枝)与时间t(月)的散点图,那么此种豆类生长枝数与时间的关系用下列函数模型近似刻画最好的是( )

A.y=2t2
B.y=log2t
C.y=t3
D.y=2t

查看答案和解析>>

想象一下一个人从出生到死亡,在每个生日都测量身高,并作出这些数据散点图,这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析.下表是一位母亲给儿子作的成长记录:

年龄/周岁

3

4

5

6

7

8

9

身高/cm

90.8

97.6

104.2

110.9

115.6

122.0

128.5

年龄/周岁

10

11

12

13

14

15

16

身高/cm

134.2

140.8

147.6

154.2

160.9

167.5

173.0

(1)年龄(解释变量)和身高(预报变量)之间具有怎样的相关关系?

(2)如果年龄相差5岁,则身高有多大差异?(3~16岁之间)

(3)如果身高相差20 cm,其年龄相差多少?

(4)计算残差,说明该函数模型能够较好地反映年龄与身高的关系吗?请说明理由?

查看答案和解析>>

想象一下一个人从出生到死亡,在每个生日都测量身高,并作出这些数据散点图,这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析.下表是一位母亲给儿子作的成长记录:

年龄/周岁

3

4

5

6

7

8

9

身高/cm

90.8

97.6

104.2

110.9

115.6

122.0

128.5

年龄/周岁

10

11

12

13

14

15

16

身高/cm

134.2

140.8

147.6

154.2

160.9

167.5

173.0

(1)年龄(解释变量)和身高(预报变量)之间具有怎样的相关关系?

(2)如果年龄相差5岁,则身高有多大差异?(3~16岁之间)

(3)如果身高相差20 cm,其年龄相差多少?

(4)计算残差,说明该函数模型能够较好地反映年龄与身高的关系吗?请说明理由?

查看答案和解析>>


同步练习册答案