设函数.. 当时.取得极值. (1).求的值.并判断是函数的极大值还是极小值, (2).当时.函数与的图象有两个公共点.求的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)
设函数.
(Ⅰ)若当取得极值,求a的值,并讨论的单调性;
(Ⅱ)若存在极值,求a的取值范围,并证明所有极值之和大于.
请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分。做答时请写清题号。

查看答案和解析>>

(本小题满分12分)

设函数.

(Ⅰ)若当取得极值,求a的值,并讨论的单调性;

(Ⅱ)若存在极值,求a的取值范围,并证明所有极值之和大于.

请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分。做答时请写清题号。

 

查看答案和解析>>

是定义在R上的奇函数,的图象关于直线x = 1对称,当时,

(1)求的解析式;

(2)当x = 1时,取得极值,证明:对任意x1,不等式

(3)若上的单调函数,且当时有

证明:

查看答案和解析>>

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>


同步练习册答案