题目列表(包括答案和解析)
已知数列
满足
(I)求数列
的通项公式;
(II)若数列
中
,前
项和为
,且
证明:
![]()
【解析】第一问中,利用
,![]()
∴数列{
}是以首项a1+1,公比为2的等比数列,即
![]()
第二问中,
![]()
进一步得到得
即![]()
即
是等差数列.
然后结合公式求解。
解:(I) 解法二、
,![]()
∴数列{
}是以首项a1+1,公比为2的等比数列,即
![]()
(II)
………②
由②可得:
…………③
③-②,得
即
…………④
又由④可得
…………⑤
⑤-④得![]()
即
是等差数列.
![]()
![]()
![]()
![]()
(本小题满分14分)设函数f (x)满足f (0) =1,且对任意
,都有f (xy+1) = f (x) f (y)-f (y)-x+2.(I) 求f (x) 的解析式;(II) 若数列{an}满足:an+1=3f (an)-1(n ?? N*),且a1=1,求数列{an}的通项公式;
(Ⅲ)求数列{an}的前n项和Sn.
如图表示电流 I 与时间t的函数关系式: I =
在同一周期内的图象.
(1)根据图象写出I =
的解析式;
(2)为了使I =
中t在任意-段
秒的时间内电流I能同时取得最大值和最小值,那么正整数
的最小
值是多少?
如图表示电流 I 与时间t的函数关系式: I =
在同一周期内的图象。
(1)根据图象写出I =
的解析式;
(2)为了使I =
中t在任意-段
秒的时间内电流I能同时取得最大值和最小值,那么正整数
的最小值是多少?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com