题目列表(包括答案和解析)
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。
(1)问中∵
,∴
,…………………1分
∵
,得到三角关系是
,结合
,解得。
(2)由
,解得
,
,结合二倍角公式
,和
,代入到两角和的三角函数关系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②联立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
将①代入②中,可得
③ …………………4分
将③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,从而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
综上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
综上可得
…………………12分
(若用
,又∵
∴
,
已知函数f(x)=
sin(ωx+φ)
(0<φ<π,ω>0)过点
,函数y=f(x)图象的两相邻对称轴间的距离为
.
(1) 求f(x)的解析式;
(2) f(x)的图象向右平移
个单位后,得到函数y=g(x)的图象,求函数g(x)的单调递减区间.
【解析】本试题主要考查了三角函数的图像和性质的运用,第一问中利用函数y=f(x)图象的两相邻对称轴间的距离为
.得
,
所以![]()
第二问中,![]()
![]()
,
![]()
可以得到单调区间。
解:(Ⅰ)由题意得
,
,…………………1分
代入点
,得
…………1分
,
∴![]()
(Ⅱ)
,![]()
![]()
的单调递减区间为
,
.
下列叙述中,正确的个数是
①集合中最小的数是1;
②若-a
N,则a∈N;
③若a∈N*,b∈N,则a+b的最小值是2;
④方程x2-4x=-4的解集是{2,2}.
[ ]
A.0个 B.1个 C.2个 D.3个本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。K^S*5U.C#O
(1)(本小题满分7分)选修4-2:矩阵与变换
已知向量
=
,变换T的矩阵为A=
,平面上的点P(1,1)在变换T
作用下得到点P′(3,3),求A4
.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
直线
与圆
(
>0)相交于A、B两点,设
P(-1,0),且|PA|:|PB|=1:2,求实数
的值![]()
(3)(本小题满分7分)选修4-5:不等式选讲K^S*5U.C#O
对于x∈R,不等式|x-1|+|x-2|≥
2+
2恒成立,试求2
+
的最大值。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com