所以.所求实数为a=-2.b=-1或a=-4.b=2. 查看更多

 

题目列表(包括答案和解析)

已知函数

(Ⅰ)当b=0时,若f(x)在[2,+∞)上单调递增,求a的取值范围;

(Ⅱ)求满足下列条件的所有实数对(a,b):当a是整数时,存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;

(Ⅲ)对满足(Ⅱ)的条件的一个实数对(a,b),试构造一个定义在,且上的函数h(x),使当x∈(-2,0)时,h(x)=f(x),当x∈D时,h(x)取得最大值的自变量的值构成以x0为首项的等差数列.

查看答案和解析>>

已知函数,(a,b∈R)

(Ⅰ)当b=0时,若f(x)在[2,+∞)上单调递增,求a的取值范围;

(Ⅱ)求满足下列条件的所有实数对(a,b):当a是整数时,存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;

(Ⅲ)对满足(Ⅱ)的条件的一个实数对(a,b),试构造一个定义在D={x|x>-2,且x≠2k-2,k∈N}上的函数h(x),使当x∈(-2,0)时,h(x)=f(x),当x∈D时,h(x)取得最大值的自变量的值构成以x0为首项的等差数列.

查看答案和解析>>

已知函数,(a,b∈R)

(Ⅰ)当b=0时,若f(x)在[2,+∞)上单调递增,求a的取值范围;

(Ⅱ)求满足下列条件的所有实数对(a,b):当a是整数时,存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;

(Ⅲ)对满足(Ⅱ)的条件的一个实数对(a,b),试构造一个定义在D={x|x>-2,且x≠2k-2,k∈N}上的函数h(x),使当x∈(-2,0)时,h(x)=f(x),当x∈D时,h(x)取得最大值的自变量的值构成以x0为首项的等差数列.

查看答案和解析>>

已知点P是直角坐标平面内的动点,点P到直线l1:x=-2的距离为d1,到点F(-1,0)的距离为d2,且

(Ⅰ)求动点P所在曲线C的方程;

(Ⅱ)直线l过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线l1:x=-2的垂线,对应的垂足分别为M、N,试判断点F与以线段MN为直径的圆的位置关系(指在圆内、圆上、圆外等情况);

(Ⅲ)记S1=SFAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),问是否存在实数λ,使S=λS1S3成立.若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

下列命题中正确的为________.(填上你认为正确的所有序号)

(1)用更相减损术求295和85的最大公约数时,需要做减法的次数是12;

(2)利用语句X=A,A=B,B=X可以实现交换变量A,B的值;

(3)用秦九韶算法计算多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4时的值时,V2的值为-57;

(4)如果一组数中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变.

查看答案和解析>>


同步练习册答案