题目列表(包括答案和解析)
现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;
(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(Ⅲ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记
,求随机变量
的分布列与数学期望
.
【解析】依题意,这4个人中,每个人去参加甲游戏的概率为
,去参加乙游戏的概率为
.
设“这4个人中恰有i人去参加甲游戏”为事件![]()
![]()
则
.
(1)这4个人中恰有2人去参加甲游戏的概率![]()
(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则
.由于
互斥,故![]()
所以,这个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为
.
(3)
的所有可能取值为0,2,4.由于
互斥,
互斥,故![]()
![]()
所以
的分布列是
|
|
0 |
2 |
4 |
|
P |
|
|
|
随机变量
的数学期望
.
下列叙述中,是离散型随机变量的为( )
A.某人早晨在车站等出租车的时间
B.将一颗均匀硬币掷十次,出现正面或反面的次数
C.连续不断的射击,首次命中目标所需要的次数
D.袋中有2个黑球6个红球,任取2个,取得一个红球的可能性 3.C.解析:由条件f(a)>0,f(b)>0仅知道二次函数图象过x轴上方两点,据此画图会出现多种情况与x轴交点横坐标在(a,b)上可能有0个、1个或2个,因此选C
(本小题满分12分)
一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.试求出该考生:
(Ⅰ)得60分的概率;
(Ⅱ)得多少分的可能性最大?
(Ⅲ)所得分数
的数学期望(用小数表示,精确到0.k^s*5#u01).
(文科)投掷一个质地均匀,每个面上标有一个数字的正方体玩具,它的六个面中,有两个面的数字是0,两个面的数字是2,两个面的数字是4.将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标.
(Ⅰ)求点P落在区域
上的概率;
(Ⅱ)若以落在区域
上的所有点为顶点作面积最大的多边形区域
,在区域
上随机撒一粒豆子,求豆子落在区域M上的概率.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com