题目列表(包括答案和解析)
(本小题满分12分)
设双曲线
的方程为
,
、
为其左、右两个顶点,
是双曲线
上的任意一点,作
,
,垂足分别为
、
,
与
交于点
.
(1)求
点的轨迹
方程;
(2)设
、
的离心率分别为
、
,当
时,求
的取值范围.
已知定点
,
,动点
到定点
距离与到定点
的距离的比值是
.
(Ⅰ)求动点
的轨迹方程,并说明方程表示的曲线;
(Ⅱ)当
时,记动点
的轨迹为曲线
.
①若
是圆
上任意一点,过
作曲线
的切线,切点是
,求
的取值范围;
②已知
,
是曲线
上不同的两点,对于定点
,有
.试问无论
,
两点的位置怎样,直线
能恒和一个定圆相切吗?若能,求出这个定圆的方程;若不能,请说明理由.
(本题满分14分).有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作如下设计:在钢板的四个角处各切去一个边长为![]()
的小正方形,剰余部分围成一个长方体,该长方体的高是小正方形的边长.
(1)请你求出这种切割、焊接而成的长方体容器的的容积V1(用
表示);
(2)经过设计(1)的方法,计算得到当
时,Vl取最大值
,为了材料浪费最少,工人师傅还实践出了其它焊接方法,请写出与(1)的焊接方法更佳(使材料浪费最少,容积比Vl大)的设计方案,并计算利用你的设计方案所得到的容器的容积。
![]()
((本小题满分13分)
若
为集合
且
的子集,且满足两个条件:
①
;
②对任意的
,至少存在一个
,使
或
.
则称集合组
具有性质
.
如图,作
行
列数表,定义数表中的第
行第
列的数为
.
|
|
|
… |
|
|
|
|
… |
|
|
… |
… |
… |
… |
|
|
|
… |
|
(Ⅰ)当
时,判断下列两个集合组是否具有性质
,如果是请画出所对应的表格,如果不是请说明理由;
集合组1:
;
集合组2:
.
(Ⅱ)当
时,若集合组
具有性质
,请先画出所对应的
行3列的一个数表,再依此表格分别写出集合
;
(Ⅲ)当
时,集合组
是具有性质
且所含集合个数最小的集合组,求
的值及
的最小值.(其中
表示集合
所含元素的个数)
(本小题满分13分)
已知点
是函数
的图像上的两点,若对于任意实数
,当
时,以
为切点分别作函数
的图像的切线,则两切线必平行,并且当
时函数
取得极小值1.[来源:]
(1)求函数
的解析式;
(2)若
是函数
的图像上的一点,过
作函数
图像的切线,切线与
轴和直线
分别交于
两点,直线
与
轴交于
点,求△ABC的面积的最大值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com