如图6.已知正方体的棱长为2.点E是正方形的中心.点F.G分别是棱的中点.设点分别是点E.G在平面内的正投影. (1)求以E为顶点.以四边形在平面内的正投影为底面边界的棱锥的体积, (2)证明:直线, (3)求异面直线所成角的正统值 解:(1)依题作点.在平面内的正投影..则.分别为.的中点.连结....则所求为四棱锥的体积.其底面面积为 . 又面..∴. (2)以为坐标原点...所在直线分别作轴.轴.轴.得..又...则... ∴..即.. 又.∴平面. (3)..则.设异面直线所成角为.则. 查看更多

 

题目列表(包括答案和解析)

 18(本小题满分12分)

下表提供了某厂节能降耗技术改进后生产甲产品过程中记录的产量x(吨)与相应的

生产能耗y(吨标准煤)的几组对照数据。

x

3

4

5

6

y

2.5

3

4

4.5

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=

(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

(18) (本小题满分12分)(注意:在试用题卷上作答无效)在中,内角A、b、c的对边长分别为a、b、c.已知,且,求b.

查看答案和解析>>

 18(本小题满分12分)

下表提供了某厂节能降耗技术改进后生产甲产品过程中记录的产量x(吨)与相应的

生产能耗y(吨标准煤)的几组对照数据。

x

3

4

5

6

y

2.5

3

4

4.5

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=

(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)

在平面直角坐标系中,已知为坐标原点,点的坐标为,点的坐标为,其中.设.

(1)若,求方程在区间内的解集;

(2)若点是过点且法向量为的直线上的动点.当时,设函数的值域为集合,不等式的解集为集合. 若恒成立,求实数的最大值;

(3)根据本题条件我们可以知道,函数的性质取决于变量的值. 当时,试写出一个条件,使得函数满足“图像关于点对称,且在取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)

查看答案和解析>>


同步练习册答案