导数的概念. 查看更多

 

题目列表(包括答案和解析)

导数的概念

(1)对于函数y=f(x),我们把式子称为函数f(x)从x1到x2的_________.换言之,如果自变量x在x0处有增量Δx,那么函数f(x)相应地有增量_________;比值_________就叫做函数y=f(x)在x0到x0Δx之间的_________.

(2)函数y=f(x)在x=x0处的瞬时变化率是_________,我们称它为函数y=f(x)在x=x0处的_________,记作_________,即(x0)=_________.

(3)函数f(x)的导数(x)就是x的一个函数.我们称它为f(x)的_________,简称_________,记作_________.

查看答案和解析>>

导数的概念

(1)对于函数y=f(x),如果自变量x在x0处有增数Δx,那么函数y相应地有增量_________;比值_________就叫做函数y=f(x)在x0到x0Δx之间的_________.

(2)当Δx→0时,有极限,我们就说y=f(x)在点x0处_________,并把这个极限叫做f(x)在点x0处的导数(或变化率)记作_________或_________,即(x0)=_________=_________,函数f(x)的导数(x)就是当Δx→0时,函数的增量Δy与自变量的增量Δx的比的极限,即(x)=_________=_________.

查看答案和解析>>

A.

【命题意图】本题考查导数的概念与几何意义,中等题.

查看答案和解析>>

平面向量的数量积a·b是一个非常重要的概念,利用它可以容易地证明平面几何的许多命题,例如勾股定理、菱形的对角线相互垂直、长方形对角线相等、正方形的对角线垂直平分等.请你给出具体证明.

你能利用向量运算推导关于三角形、四边形、圆等平面图形的一些其他性质吗?

查看答案和解析>>

在日常生活和科学领域中,有许多需要用导数概念来理解的量,在物理学中,速度是________的导数,线密度是________的导数,功率是________的导数,加速度是________的导数;在经济学中,边际成本是________.

查看答案和解析>>


同步练习册答案