4.抛物线的几何性质 (1)范围 因为p>0.由方程可知.这条抛物线上的点M的坐标(x.y)满足不等式x≥0.所以这条抛物线在y轴的右侧,当x的值增大时.|y|也增大.这说明抛物线向右上方和右下方无限延伸. (2)对称性 以-y代y.方程不变.所以这条抛物线关于x轴对称.我们把抛物线的对称轴叫做抛物线的轴. (3)顶点 抛物线和它的轴的交点叫做抛物线的顶点.在方程中.当y=0时.x=0.因此抛物线的顶点就是坐标原点. (4)离心率 抛物线上的点M与焦点的距离和它到准线的距离的比.叫做抛物线的离心率.用e表示.由抛物线的定义可知.e=1. 查看更多

 

题目列表(包括答案和解析)

(2012•江苏一模)本题主要考查抛物线的标准方程、简单的几何性质等基础知识,考查运算求解、推理论证的能力.
如图,在平面直角坐标系xOy,抛物线的顶点在原点,焦点为F(1,0).过抛物线在x轴上方的不同两点A、B,作抛物线的切线AC、BD,与x轴分别交于C、D两点,且AC与BD交于点M,直线AD与直线BC交于点N.
(1)求抛物线的标准方程;
(2)求证:MN⊥x轴;
(3)若直线MN与x轴的交点恰为F(1,0),求证:直线AB过定点.

查看答案和解析>>

已知抛物线的顶点在坐标原点,它的准线经过双曲线的一个焦点且垂直于的两个焦点所在的轴,若抛物线与双曲线的一个交点是

(Ⅰ)求抛物线的方程及其焦点的坐标; (Ⅱ)求双曲线的方程及其离心率

【解析】本试题主要考查了抛物线方程的求解,以及双曲线与抛物线的交点问题,和双曲线的几何性质的综合求解和运用。

 

查看答案和解析>>

本题主要考查抛物线的标准方程、简单的几何性质等基础知识,考查运算求解、推理论证的能力.
如图,在平面直角坐标系xOy,抛物线的顶点在原点,焦点为F(1,0).过抛物线在x轴上方的不同两点A、B,作抛物线的切线AC、BD,与x轴分别交于C、D两点,且AC与BD交于点M,直线AD与直线BC交于点N.
(1)求抛物线的标准方程;
(2)求证:MN⊥x轴;
(3)若直线MN与x轴的交点恰为F(1,0),求证:直线AB过定点.

查看答案和解析>>

本题主要考查抛物线的标准方程、简单的几何性质等基础知识,考查运算求解、推理论证的能力.
如图,在平面直角坐标系xOy,抛物线的顶点在原点,焦点为F(1,0).过抛物线在x轴上方的不同两点A、B,作抛物线的切线AC、BD,与x轴分别交于C、D两点,且AC与BD交于点M,直线AD与直线BC交于点N.
(1)求抛物线的标准方程;
(2)求证:MN⊥x轴;
(3)若直线MN与x轴的交点恰为F(1,0),求证:直线AB过定点.

查看答案和解析>>

已知抛物线的顶点在坐标原点,它的准线经过双曲线的一个焦点且垂直于的两个焦点所在的轴,若抛物线与双曲线的一个交点是

(Ⅰ)求抛物线的方程及其焦点的坐标; (Ⅱ)求双曲线的方程及其离心率

【解析】本试题主要考查了抛物线方程的求解,以及双曲线与抛物线的交点问题,和双曲线的几何性质的综合求解和运用。

 

查看答案和解析>>


同步练习册答案