反函数的一些性质:(1)反函数的定义域和值域分别是原函数的值域和定义域.称为互调性.(2)定义域上的单调函数必有反函数.且单调性相同(即函数与其反函数在各自的定义域上的单调性相同).对连续函数而言.只有单调函数才有反函数.但非连续的非单调函数也可能有反函数.的图象与其反函数y =f(x)的图象关于直线y=x对称.的图象与其反函数y =f(x)的图象的交点.当它们是递增时.交点在直线y=x上.当它们递减时.交点可以不在直线y=x上. 如 第四讲:函数图象的对称性与变换 查看更多

 

题目列表(包括答案和解析)

若函数f(x)满足下列条件:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)具有性质M;反之,若x0不存在,则称函数f(x)不具有性质M.
(Ⅰ)证明:函数f(x)=2x具有性质M,并求出对应的x0的值;
(Ⅱ)已知函数h(x)=数学公式具有性质M,求a的取值范围;
(Ⅲ)试探究形如①y=kx+b(k≠0)、②y=ax2+bx+c(a≠0)、③y=数学公式(k≠0)、④y=ax(a>0且a≠1)、⑤y=logax(a>0且a≠1)的函数,指出哪些函数一定具有性质M?并加以证明.

查看答案和解析>>

若函数f(x)满足下列条件:在定义域内存在x,使得f(x+1)=f(x)+f(1)成立,则称函数f(x)具有性质M;反之,若x不存在,则称函数f(x)不具有性质M.
(Ⅰ)证明:函数f(x)=2x具有性质M,并求出对应的x的值;
(Ⅱ)已知函数h(x)=具有性质M,求a的取值范围;
(Ⅲ)试探究形如①y=kx+b(k≠0)、②y=ax2+bx+c(a≠0)、③y=(k≠0)、④y=ax(a>0且a≠1)、⑤y=logax(a>0且a≠1)的函数,指出哪些函数一定具有性质M?并加以证明.

查看答案和解析>>

若函数f(x)满足下列条件:在定义域内存在x,使得f(x+1)=f(x)+f(1)成立,则称函数f(x)具有性质M;反之,若x不存在,则称函数f(x)不具有性质M.
(Ⅰ)证明:函数f(x)=2x具有性质M,并求出对应的x的值;
(Ⅱ)已知函数h(x)=具有性质M,求a的取值范围;
(Ⅲ)试探究形如①y=kx+b(k≠0)、②y=ax2+bx+c(a≠0)、③y=(k≠0)、④y=ax(a>0且a≠1)、⑤y=logax(a>0且a≠1)的函数,指出哪些函数一定具有性质M?并加以证明.

查看答案和解析>>

若函数f(x)满足下列条件:在定义域内存在x,使得f(x+1)=f(x)+f(1)成立,则称函数f(x)具有性质M;反之,若x不存在,则称函数f(x)不具有性质M.
(Ⅰ)证明:函数f(x)=2x具有性质M,并求出对应的x的值;
(Ⅱ)已知函数h(x)=具有性质M,求a的取值范围;
(Ⅲ)试探究形如①y=kx+b(k≠0)、②y=ax2+bx+c(a≠0)、③y=(k≠0)、④y=ax(a>0且a≠1)、⑤y=logax(a>0且a≠1)的函数,指出哪些函数一定具有性质M?并加以证明.

查看答案和解析>>

若函数f(x)满足下列条件:在定义域内存在x,使得f(x+1)=f(x)+f(1)成立,则称函数f(x)具有性质M;反之,若x不存在,则称函数f(x)不具有性质M.
(Ⅰ)证明:函数f(x)=2x具有性质M,并求出对应的x的值;
(Ⅱ)已知函数h(x)=具有性质M,求a的取值范围;
(Ⅲ)试探究形如①y=kx+b(k≠0)、②y=ax2+bx+c(a≠0)、③y=(k≠0)、④y=ax(a>0且a≠1)、⑤y=logax(a>0且a≠1)的函数,指出哪些函数一定具有性质M?并加以证明.

查看答案和解析>>


同步练习册答案