几个特殊位置的圆的极坐标方程: (1)当圆心位于极点:. (2)当圆心位于: (3)当圆心位于: (4)若圆心为.半径为r的圆方程为: 查看更多

 

题目列表(包括答案和解析)

点P到x轴的距离比它到点(0,1)的距离小1,称点P的轨迹为曲线C,点M为直线l:y=-m (m>0)上任意一点,过点M作曲线C的两条切线MA,MB,切点分别为A,B.
(1)求曲线C的轨迹方程;
(2)当M的坐标为(0,-l)时,求过M,A,B三点的圆的标准方程,并判断直线l与此圆的位置关系;
(3)当m变化时,试探究直线l上是否存在点M,使MA⊥MB?若存在,有几个这样的点,若不存在,请说明理由.

查看答案和解析>>

设抛物线C的方程为x2=4y,M为直线l:y=-m(m>0)上任意一点,过点M作抛物线C的两条切线MA,MB,切点分别为A,B.
(Ⅰ)当M的坐标为(0,-l)时,求过M,A,B三点的圆的标准方程,并判断直线l与此圆的位置关系;
(Ⅱ)当m变化时,试探究直线l上是否存在点M,使MA⊥MB?若存在,有几个这样的点,若不存在,请说明理由.

查看答案和解析>>

(2012•韶关一模)设抛物线C的方程为x2=4y,M为直线l:y=-m(m>0)上任意一点,过点M作抛物线C的两条切线MA,MB,切点分别为A,B.
(1)当M的坐标为(0,-1)时,求过M,A,B三点的圆的方程,并判断直线l与此圆的位置关系;
(2)求证:直线AB恒过定点;
(3)当m变化时,试探究直线l上是否存在点M,使△MAB为直角三角形,若存在,有几个这样的点,若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)设抛物线的方程为为直线上任意一点,过点作抛物线的两条切线,切点分别为,.

(1)当的坐标为时,求过三点的圆的方程,并判断直线与此圆的位置关系;

(2)求证:直线恒过定点;

(3)当变化时,试探究直线上是否存在点,使为直角三角形,若存在,有几个这样的点,若不存在,说明理由.

 

 

查看答案和解析>>

点P到x轴的距离比它到点(0,1)的距离小1,称点P的轨迹为曲线C,点M为直线l:y=-m (m>0)上任意一点,过点M作曲线C的两条切线MA,MB,切点分别为A,B.
(1)求曲线C的轨迹方程;
(2)当M的坐标为(0,-l)时,求过M,A,B三点的圆的标准方程,并判断直线l与此圆的位置关系;
(3)当m变化时,试探究直线l上是否存在点M,使MA⊥MB?若存在,有几个这样的点,若不存在,请说明理由.

查看答案和解析>>


同步练习册答案