设f(x)=试确定a的值. 使f(x)成为区间中的连续函数. 解:f(x)在上连续.只要使f(x)在x=0处也连续. 1° f(x)在x=0处有定义.f(0)=a 2° f(x)=cosx=cos0=1.,f(x)=(a+x)=a. 要使f(x)存在. ∴a=1. 此时f(x)=1=f(0). ∴f(x)在x=0处连续. ∴a=1时f(x)在上连续. 分段函数要连续.主要看各段的交界处是否连续 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=
x+1-aa-x
,a∈R
.利用函数y=f(x)构造一个数列{xn},方法如下:对于定义域中给定的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n∈N*),…如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn}.
(1)求实数a的值;
(2)若x1=1,求(x1+1)(x2+1)…(xn+1)的值;
(3)设Tn=(x1+1)(x2+1)…(xn+1)(n∈N*),试问:是否存在n使得Tn+Tn+1+…+Tn+2006=2006成立,若存在,试确定n及相应的x1的值;若不存在,请说明理由?

查看答案和解析>>

设a是实数,f(x)=a-
22x+1

(1)试确定a的值,使f(-x)+f(x)=0成立.
(2)求证:不论a为何实数,f(x)均为增函数.

查看答案和解析>>

设a是实数,f(x)=a-
2
2x+1

(1)试确定a的值,使f(-x)+f(x)=0成立.
(2)求证:不论a为何实数,f(x)均为增函数.

查看答案和解析>>

已知函数f(x)=ex+ax,g(x)=exlnx.(e≈2.71828)
(I)设曲线y=f(x)在点(1,f(1))x=1处的切线为l,若l与圆(x-1)2+y2=
12
相切,求a的值;
(II)若对于任意实数x≥0,f(x)>0恒成立,试确定实数a的取值范围;
(III)当a=-1时,是否存在实数x0∈[1,e],使曲线C:y=g(x)-f(x)在点x=x0处的切线与Y轴垂直?若存在,求出x0的值;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=ex+ax,g(x)=exlnx.(其中e为自然对数的底数),
(Ⅰ)设曲线y=f(x)在x=1处的切线与直线x+(e-1)y=1垂直,求a的值;
(Ⅱ)若对于任意实数x≥0,f(x)>0恒成立,试确定实数a的取值范围;
(Ⅲ)当a=-1时,是否存在实数x∈[1,e],使曲线C:y=g(x)-f(x)在点x=x处的切线与y轴垂直?若存在,求出x的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案