题目列表(包括答案和解析)
| a+c |
| b |
| α+β |
| 2 |
| α-β |
| 2 |
| α+β |
| 2 |
| α-β |
| 2 |
下列语句中是算法的个数为( )
①从济南到巴黎:先从济南坐火车到北京,再坐飞机到巴黎;
②统筹法中“烧水泡茶”的故事;
③测量某棵树的高度,判断其是否是大树;
④已知三角形的一部分边长和角,借助正余弦定理求得剩余的边角,再利用三角形的面积公式求出该三角形的面积。
A.1 B.2 C.3 D.4
①从济南到巴黎:先从济南坐火车到北京,再坐飞机到巴黎 ②统筹法中“烧水泡茶”的故事 ③测量某棵树的高度,判断其是否是大树 ④已知三角形的一部分边长和角,借助正、余弦定理求得剩余的边和角,再利用三角形的面积公式求出该三角形的面积
A.1 B.2 C.3 D.4
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。
(1)问中∵
,∴
,…………………1分
∵
,得到三角关系是
,结合
,解得。
(2)由
,解得
,
,结合二倍角公式
,和
,代入到两角和的三角函数关系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②联立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
将①代入②中,可得
③ …………………4分
将③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,从而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
综上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
综上可得
…………………12分
(若用
,又∵
∴
,
本题可能用到的公式
sinα·cosβ=
[sin(α+β)+sin(α-β)]
cosα·sinβ=
[sin(α+β)-sin(α-β)]
cosα·cosβ=
[cos(α+β)+cos(α-β)]
sinα·sinβ=-
[cos(α+β)-cos(α-β)]
在△ABC中,角A、B、C所对的边分别为a、b、c,复数z=cosA+isinA.且满足|z+1|=1.
(1)求复数z的值;
(2)求
的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com