2.基本不等式:(a,b≥0) ①探索并了解基本不等式的证明过程, ②会用基本不等式解决简单的最大(小)问题. 查看更多

 

题目列表(包括答案和解析)

已知基本不等式:(a、b都是正实数,当且仅当a=b时等号成立)可以推广到n个正实数的情况,即对于n个正实数a1,a2,a3,…,an,有(当且仅当a1=a2=a3=…=an时,取等号).

同理,当a、b都是正实数时,(a+b)()≥2ab·2·=4,可以推导出结论:对于n个正实数a1,a2,a3,…,an有(a1+a2+a3)()≥________;(a1+a2+a3+a4)()≥________;(a1+a2+a3+…+an)(+…)≥________;

如果对于n个同号实数a1,a2,a3,…,an(同正或者同负),那么,根据上述结论,(a1+a2+a3+…+an)(+…)的取值范围是________.

查看答案和解析>>

(2006•宝山区二模)给出函数f(x)=
x2+4
+tx
(x∈R).
(1)当t≤-1时,证明y=f(x)是单调递减函数;
(2)当t=
1
2
时,可以将f(x)化成f(x)=a(
x2+4
+x)+b(
x2+4
-x)
的形式,运用基本不等式求f(x)的最小值及此时x的取值;
(3)设一元二次函数g(x)的图象均在x轴上方,h(x)是一元一次函数,记F(x)=
g(x)
+h(x)
,利用基本不等式研究函数F(x)的最值问题.

查看答案和解析>>

下列结论中,错用基本不等式做依据的是(  )
A、a,b均为负数,则
2a
b
+
b
2a
≥2
B、
x2+2
x2+1
≥2
C、sinx+
4
sinx
≥4
D、a∈R+,(3-a)(1-
3
a
)≤0

查看答案和解析>>

 下列结论中,错用基本不等式做依据的是           (    )

    A.a,b均为负数,则 B.

    C.  D.

 

查看答案和解析>>

(本小题考查基本不等式的应用)已知

的最小值是  

A.2   B.    C.4   D.5

 

查看答案和解析>>


同步练习册答案