本讲内容主要涉及空间向量的坐标及运算.空间向量的应用.本讲是立体几何的核心内容.高考对本讲的考察形式为:以客观题形式考察空间向量的概念和运算.结合主观题借助空间向量求夹角和距离. 预测07年高考对本讲内容的考查将侧重于向量的应用.尤其是求夹角.求距离.教材上淡化了利用空间关系找角.找距离这方面的讲解.加大了向量的应用.因此作为立体几何解答题.用向量法处理角和距离将是主要方法.在复习时应加大这方面的训练力度. 查看更多

 

题目列表(包括答案和解析)

(辽宁卷理19)如图,在棱长为1的正方体

中,AP=BQ=b(0<b<1),截面PQEF,截面PQGH

(Ⅰ)证明:平面PQEF和平面PQGH互相垂直;

(Ⅱ)证明:截面PQEF和截面PQGH面积之和是定值,

并求出这个值;

(Ⅲ)若与平面PQEF所成的角为,求与平面PQGH所成角的正弦值.

说明:本小题主要考查空间中的线面关系,面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力。满分12分.

查看答案和解析>>

(辽宁卷理19)如图,在棱长为1的正方体

中,AP=BQ=b(0<b<1),截面PQEF,截面PQGH

(Ⅰ)证明:平面PQEF和平面PQGH互相垂直;

(Ⅱ)证明:截面PQEF和截面PQGH面积之和是定值,

并求出这个值;

(Ⅲ)若与平面PQEF所成的角为,求与平面PQGH所成角的正弦值.

说明:本小题主要考查空间中的线面关系,面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力。满分12分.

查看答案和解析>>

如图,在四棱锥P-ABCD中,底面ABCD是矩形,,BC=1,,PD=CD=2.

(I)求异面直线PA与BC所成角的正切值;

(II)证明平面PDC⊥平面ABCD;

(III)求直线PB与平面ABCD所成角的正弦值。

【考点定位】本小题主要考查异面直线所成的角、平面与平面垂直、直线与平面所成的角等基础知识.,考查空间想象能力、运算求解能力和推理论证能力.

 

查看答案和解析>>

已知椭圆(a>b>0),点在椭圆上。

(I)求椭圆的离心率。

(II)设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值。

【考点定位】本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面内两点间距离公式等基础知识. 考查用代数方法研究圆锥曲线的性质,以及数形结合的数学思想方法.考查运算求解能力、综合分析和解决问题的能力.

 

查看答案和解析>>

(本小题满分12分)

有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:


其中直径在区间[1.48,1.52]内的零件为一等品。

(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;

(Ⅱ)从一等品零件中,随机抽取2个.

     (ⅰ)用零件的编号列出所有可能的抽取结果;

     (ⅱ)求这2个零件直径相等的概率。本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分

【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==.

      (Ⅱ)(i)解:一等品零件的编号为.从这6个一等品零件中随机抽取2个,所有可能的结果有:,,,

,,,共有15种.

      (ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:,共有6种.

      所以P(B)=.

(本小题满分12分)

如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求异面直线CE与AF所成角的余弦值;      

(Ⅱ)证明CD⊥平面ABF;

查看答案和解析>>


同步练习册答案