题目列表(包括答案和解析)
已知
是公差为d的等差数列,
是公比为q的等比数列
(Ⅰ)若
,是否存在
,有
?请说明理由;
(Ⅱ)若
(a、q为常数,且aq
0)对任意m存在k,有
,试求a、q满足的充要条件;
(Ⅲ)若
试确定所有的p,使数列
中存在某个连续p项的和式数列中
的一项,请证明.
【解析】第一问中,由
得
,整理后,可得![]()
、
,
为整数
不存在
、
,使等式成立。
(2)中当
时,则![]()
即
,其中
是大于等于
的整数
反之当
时,其中
是大于等于
的整数,则
,
显然
,其中![]()
![]()
、
满足的充要条件是
,其中
是大于等于
的整数
(3)中设
当
为偶数时,
式左边为偶数,右边为奇数,
当
为偶数时,
式不成立。由
式得
,整理![]()
当
时,符合题意。当
,
为奇数时,![]()
结合二项式定理得到结论。
解(1)由
得
,整理后,可得![]()
、
,
为整数
不存在
、
,使等式成立。
(2)当
时,则![]()
即
,其中
是大于等于
的整数反之当
时,其中
是大于等于
的整数,则
,
显然
,其中![]()
![]()
、
满足的充要条件是
,其中
是大于等于
的整数
(3)设
当
为偶数时,
式左边为偶数,右边为奇数,
当
为偶数时,
式不成立。由
式得
,整理![]()
当
时,符合题意。当
,
为奇数时,![]()
![]()
由
,得
![]()
当
为奇数时,此时,一定有
和
使上式一定成立。
当
为奇数时,命题都成立
一支车队有15辆车,某天依次出发执行运输任务,第一辆车于下午2时出发,第二辆车于下午2时10分出发,第三辆车于下午2时20分出发,依此类推。假设所有的司机都连续开车,并都在下午6时停下来休息。
(1)到下午6时最后一辆车行驶了多长时间?
(2)如果每辆车的行驶速度都是60
,这个车队当天一共行驶了多少千米?
【解析】第一问中,利用第一辆车出发时间为下午2时,每隔10分钟即
小时出发一辆
则第15辆车在
小时,最后一辆车出发时间为:
小时
第15辆车行驶时间为:
小时(1时40分)
第二问中,设每辆车行驶的时间为:
,由题意得到
是以
为首项,
为公差的等差数列
则行驶的总时间为:![]()
则行驶的总里程为:
运用等差数列求和得到。
解:(1)第一辆车出发时间为下午2时,每隔10分钟即
小时出发一辆
则第15辆车在
小时,最后一辆车出发时间为:
小时
第15辆车行驶时间为:
小时(1时40分)
……5分
(2)设每辆车行驶的时间为:
,由题意得到
是以
为首项,
为公差的等差数列
则行驶的总时间为:
……10分
则行驶的总里程为:![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com