题目列表(包括答案和解析)
在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,
求⑴ ∠ADB的大小;⑵ BD的长.
![]()
【解析】本试题主要考查了三角形的余弦定理和正弦定理的运用
第一问中,∵cos∠ADC=![]()
=
=-
∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=
∴ cos∠ADB=60°
第二问中,结合正弦定理∵∠DAB=180°-∠ADB-∠B=75°
由
=
得BD=
=5(
+1)
解:⑴ ∵cos∠ADC=![]()
=
=-
,……………………………3分
∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=
,
……………5分
∴ cos∠ADB=60° ……………………………6分
⑵ ∵∠DAB=180°-∠ADB-∠B=75° ……………………………7分
由
=
……………………………9分
得BD=
=5(
+1)
某港口的水深
(米)是时间
(
,单位:小时)的函数,下面是每天时间与水深的关系表:
|
|
0 |
3 |
6 |
9 |
12 |
15 |
18 |
21 |
24 |
|
|
10 |
13 |
9.9 |
7 |
10 |
13 |
10.1 |
7 |
10 |
经过长期观测,
可近似的看成是函数
,(本小题满分14分)
(1)根据以上数据,求出
的解析式。
(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?
【解析】第一问由表中数据可以看到:水深最大值为13,最小值为7,,
∴A+b=13, -A+b=7 解得 A=3, b=10
第二问要想船舶安全,必须深度
,即![]()
∴
解得:
得到结论。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com