题目列表(包括答案和解析)
已知函数f(x)(x∈R)满足f(x)=
,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.
(1)求函数f(x)的表达式;
(2)若数列{an}满足a1=
,an+1=f(an),bn=
-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;
(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=
,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即
=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=
.…………………………………………4分
(2)an+1=f(an)=
(n∈N*),bn=
-1, ∴
=
=
=
,
∴{bn}为等比数列,q=
.又∵a1=
,∴b1=
-1=
,
bn=b1qn-1=![]()
n-1=
n(n∈N*).……………………………9分
(3)证明:∵anbn=an
=1-an=1-
=
,
∴a1b1+a2b2+…+anbn=
+
+…+
<
+
+…+![]()
=
=1-
<1(n∈N*).
设抛物线
:
(
>0)的焦点为
,准线为
,
为
上一点,已知以
为圆心,
为半径的圆
交
于
,
两点.
(Ⅰ)若
,
的面积为
,求
的值及圆
的方程;
(Ⅱ)若
,
,
三点在同一条直线
上,直线
与
平行,且
与
只有一个公共点,求坐标原点到
,
距离的比值.
【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.
【解析】设准线
于
轴的焦点为E,圆F的半径为
,
![]()
则|FE|=
,
=
,E是BD的中点,
(Ⅰ) ∵
,∴
=
,|BD|=
,
设A(
,
),根据抛物线定义得,|FA|=
,
∵
的面积为
,∴
=
=
=
,解得
=2,
∴F(0,1), FA|=
, ∴圆F的方程为:
;
(Ⅱ) 解析1∵
,
,
三点在同一条直线
上, ∴
是圆
的直径,
,
由抛物线定义知
,∴
,∴
的斜率为
或-
,
∴直线
的方程为:
,∴原点到直线
的距离
=
,
设直线
的方程为:
,代入
得,
,
∵
与
只有一个公共点,
∴
=
,∴
,
∴直线
的方程为:
,∴原点到直线
的距离
=
,
∴坐标原点到
,
距离的比值为3.
解析2由对称性设
,则![]()
点
关于点
对称得:![]()
得:
,直线![]()
切点![]()
直线![]()
坐标原点到
距离的比值为![]()
先阅读理解下面的例题,再按要求解答:
例题:解一元二次不等式
.
解:∵
,
∴
.
由有理数的乘法法则“两数相乘,同号得正”,有
(1)
(2)![]()
解不等式组(1),得
,
解不等式组(2),得
,w.w.w.k.s.5.u.c.o.m
![]()
故
的解集为
或
,
即一元二次不等式
的解集为
或
.
已知函数
,数列
的项满足:
,(1)试求![]()
(2) 猜想数列
的通项,并利用数学归纳法证明.
【解析】第一问中,利用递推关系
, ![]()
, ![]()
第二问中,由(1)猜想得:
然后再用数学归纳法分为两步骤证明即可。
解: (1)
,
![]()
,
…………….7分
(2)由(1)猜想得:![]()
(数学归纳法证明)i)
,
,命题成立
ii) 假设
时,
成立
则
时,![]()
![]()
![]()
综合i),ii) :
成立
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)证明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.
![]()
【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0),
,P(0,0,2).
![]()
(1)证明:易得
,
于是
,所以![]()
(2)
,
设平面PCD的法向量
,
则
,即
.不防设
,可得
.可取平面PAC的法向量
于是
从而
.
所以二面角A-PC-D的正弦值为
.
(3)设点E的坐标为(0,0,h),其中
,由此得
.
由
,故
所以,
,解得
,即
.
解法二:(1)证明:由
,可得
,又由
,
,故
.又
,所以
.
![]()
(2)如图,作
于点H,连接DH.由
,
,可得
.
因此
,从而
为二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,![]()
因此
所以二面角
的正弦值为
.
(3)如图,因为
,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故
或其补角为异面直线BE与CD所成的角.由于BF∥CD,故
.在
中,
故![]()
![]()
在
中,由
,
,![]()
可得
.由余弦定理,
,
所以
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com