资源再利用是循环经济的重要内容.2009年1月1日实施.迫切地需要人们提高对资源再利用的认识.有专家指出:“世界上本没有垃圾.废物是发错了地方的资源. 这一认识的根据是 1物的资源或废物的性质取决于人们对物的态度 2废物向资源的转换需要一定的技术性 3废物和资源之间具有本质上的抽象同一性 4废物或资源的性质是有其所处不同实践关系决定的 A.12 B.34 C. 13 D. 24 查看更多

 

题目列表(包括答案和解析)

若数列{an}满足:a1=m1,a2=m2,an+2=pan+1+qan(p,q是常数),则称数列{an}为二阶线性递推数列,且定义方程x2=px+q为数列{an}的特征方程,方程的根称为特征根; 数列{an}的通项公式an均可用特征根求得:
①若方程x2=px+q有两相异实根α,β,则数列通项可以写成an=c1αn+c2βn,(其中c1,c2是待定常数);
②若方程x2=px+q有两相同实根α,则数列通项可以写成an=(c1+nc2)αn,(其中c1,c2是待定常数);
再利用a1=m1,a2=m2,可求得c1,c2,进而求得an.根据上述结论求下列问题:
(1)当a1=5,a2=13,an+2=5an+1-6an(n∈N*)时,求数列{an}的通项公式;
(2)当a1=1,a2=11,an+2=2an+1+3an+4(n∈N*)时,求数列{an}的通项公式;
(3)当a1=1,a2=1,an+2=an+1+an(n∈N*)时,记Sn=a1Cn1+a2Cn2+…+anCnn,若Sn能被数8整除,求所有满足条件的正整数n的取值集合.

查看答案和解析>>

下列语句表达中是算法的是(  )
①从济南到巴黎可以先乘火车到北京再坐飞机抵达;②利用公式S=
1
2
ah计算底为1高为2的三角形的面积;③
1
2
x>2x+4;④求M(1,2)与N(-3,5)两点连线的方程可先求MN的斜率再利用点斜式方程求得.
A、1个B、2个C、3个D、4个

查看答案和解析>>

下面是利用UNTIL循环设计的计算1×3×5×…×99的一个算法程序.
S=1
i=1
DO

i=i+2
LOOP  UNTIL

PRINT S
END
(Ⅰ)请将其补充完整,并转化为WHILE循环;
(Ⅱ)绘制出该算法的流程图.

查看答案和解析>>

下列语句中是算法的个数为(  )
①从济南到巴黎:先从济南坐火车到北京,再坐飞机到巴黎;
②统筹法中“烧水泡茶”的故事;
③测量某棵树的高度,判断其是否是大树;
④已知三角形的一部分边长和角,借助正余弦定理求得剩余的边角,再利用三角形的面积公式求出该三角形的面积.

查看答案和解析>>

若数列{an}满足:a1=m1,a2=m2,an+2=pan+1+qan(p,q是常数),则称数列{an}为二阶线性递推数列,且定义方程x2=px+q为数列{an}的特征方程,方程的根称为特征根; 数列{an}的通项公式an均可用特征根求得:
①若方程x2=px+q有两相异实根α,β,则数列通项可以写成an=c1αn+c2βn,(其中c1,c2是待定常数);
②若方程x2=px+q有两相同实根α,则数列通项可以写成an=(c1+nc2)αn,(其中c1,c2是待定常数);
再利用a1=m1,a2=m2,可求得c1,c2,进而求得an.根据上述结论求下列问题:
(1)当a1=1,a2=2,an+2=4an+1-4an(n∈N*)时,求数列{an}的通项公式;
(2)当a1=5,a2=13,an+2=5an+1-6an(n∈N*)时,若数列{an+1-λan}为等比数列,求实数λ的值;
(3)当a1=1,a2=1,an+2=an+1+an(n∈N*)时,求Sn=a1Cn1+a2Cn2+…+anCnn的值.

查看答案和解析>>


同步练习册答案