3.求圆锥曲线的弦长时.可利用弦长公式 d==. 再结合韦达定理,设而不求整体解决.焦点弦的长也可以直接利用焦半径公式处理.可以使运算简化. 查看更多

 

题目列表(包括答案和解析)

已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0.
(1)求证:直线l恒过定点;
(2)试判断直线l与圆C的位置关系;
(3)当直线l与圆C相交时,求直线l被圆C截得的弦何时最长,何时最短?并求截得的弦长最短时m的值以及最短长度.

查看答案和解析>>

根据下列条件求圆锥曲线的标准方程.
( I)焦点在x轴上,实轴长是10,虚轴长是8的双曲线方程;
( II)经过两点P1(
6
,1)
P2(-
3
,-
2
)
的椭圆.

查看答案和解析>>

已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0.
(Ⅰ) 证明:不论m为何值时,直线l和圆C恒有两个交点;
(Ⅱ) 判断直线l被圆C截得的弦何时最长、何时最短?并求截得的弦长最短时m的值以及最短长度.

查看答案和解析>>

(选修4-4:坐标系与参数方程)
直线
x=2a+
3
3
t
y=t
(t为参数,a为常数且a>0)被以原点为极点,x轴的正半轴为极轴,方程为ρ=2acosθ的曲线所截,求截得的弦长.

查看答案和解析>>

已知直线l1:(2m+1)x+(m+1)y-7m-5=0(m∈R)和直线l1:x+3y-5=0,圆C:x2+y2-2x-4y=0.
(1)当m为何值时,l1∥l2
(2)是否存在点P,使得不论m为何值,直线l1都经过点P?若存在,求出点P的坐标,若不存在,请说明理由;
(3)试判断直线l1与圆C的位置关系.若相交,求截得的弦长最短时m的值以及最短长度;若相切,求切点的坐标;若相离,求圆心到直线l1的距离的最大值.

查看答案和解析>>


同步练习册答案