题目列表(包括答案和解析)
设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=. (1)求△ABC的周长; (2)求cos(A-C)的值.
【解析】(1)借助余弦定理求出边c,直接求周长即可.(2)根据两角差的余弦公式需要求sinC,sinA,cosA,由正弦定理即可求出sinA,进而可求出cosA.sinC可由cosA求出,问题得解.
已知△
的内角
所对的边分别为
且
.
(1)
若
, 求
的值;
(2)
若△
的面积
求
的值.
【解析】本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系等基础知识,考查运算求解能力。第一问中
,得到正弦值
,再结合正弦定理可知,
,得到
(2)中
即
所以c=5,再利用余弦定理
,得到b的值。
解: (1)∵
, 且
, ∴
. 由正弦定理得
, ∴
.
(2)∵
∴
. ∴c=5
由余弦定理得
,
∴ ![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com