题目列表(包括答案和解析)
已知
,设![]()
和
是方程
的两个根,不等式
对任意实数
恒成立;
函数
有两个不同的零点.求使“P且Q”为真命题的实数
的取值范围.
【解析】本试题主要考查了命题和函数零点的运用。由题设x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
当a∈[1,2]时,
的最小值为3. 当a∈[1,2]时,
的最小值为3.
要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判别式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”为真命题,只需P真Q真即可。
解:由题设x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
当a∈[1,2]时,
的最小值为3.
要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判别式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
综上,要使“P∧Q”为真命题,只需P真Q真,即![]()
解得实数m的取值范围是(4,8]
已知函数
.
(Ⅰ)讨论函数
的单调性;
(Ⅱ)设
,证明:对任意
,
.
1.选修4-1:几何证明选讲
如图,
的角平分线
的延长线交它的外接圆于点![]()
(Ⅰ)证明:
∽△
;
(Ⅱ)若
的面积
,求
的大小.
证明:(Ⅰ)由已知条件,可得∠BAE=∠CAD.
因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD.
故△ABE∽△ADC.
(Ⅱ)因为△ABE∽△ADC,所以
,即AB·AC=AD·AE.
又S=
AB·ACsin∠BAC,且S=
AD·AE,故AB·ACsin∠BAC=AD·AE.
则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.
已知
是公差为d的等差数列,
是公比为q的等比数列
(Ⅰ)若
,是否存在
,有
?请说明理由;
(Ⅱ)若
(a、q为常数,且aq
0)对任意m存在k,有
,试求a、q满足的充要条件;
(Ⅲ)若
试确定所有的p,使数列
中存在某个连续p项的和式数列中
的一项,请证明.
【解析】第一问中,由
得
,整理后,可得![]()
、
,
为整数
不存在
、
,使等式成立。
(2)中当
时,则![]()
即
,其中
是大于等于
的整数
反之当
时,其中
是大于等于
的整数,则
,
显然
,其中![]()
![]()
、
满足的充要条件是
,其中
是大于等于
的整数
(3)中设
当
为偶数时,
式左边为偶数,右边为奇数,
当
为偶数时,
式不成立。由
式得
,整理![]()
当
时,符合题意。当
,
为奇数时,![]()
结合二项式定理得到结论。
解(1)由
得
,整理后,可得![]()
、
,
为整数
不存在
、
,使等式成立。
(2)当
时,则![]()
即
,其中
是大于等于
的整数反之当
时,其中
是大于等于
的整数,则
,
显然
,其中![]()
![]()
、
满足的充要条件是
,其中
是大于等于
的整数
(3)设
当
为偶数时,
式左边为偶数,右边为奇数,
当
为偶数时,
式不成立。由
式得
,整理![]()
当
时,符合题意。当
,
为奇数时,![]()
![]()
由
,得
![]()
当
为奇数时,此时,一定有
和
使上式一定成立。
当
为奇数时,命题都成立
已知
,(其中
)
⑴求
及
;
⑵试比较
与
的大小,并说明理由.
【解析】第一问中取
,则
;
…………1分
对等式两边求导,得![]()
取
,则
得到结论
第二问中,要比较
与
的大小,即比较:
与
的大小,归纳猜想可得结论当
时,
;
当
时,
;
当
时,
;
猜想:当
时,
运用数学归纳法证明即可。
解:⑴取
,则
;
…………1分
对等式两边求导,得
,
取
,则
。 …………4分
⑵要比较
与
的大小,即比较:
与
的大小,
当
时,
;
当
时,
;
当
时,
;
…………6分
猜想:当
时,
,下面用数学归纳法证明:
由上述过程可知,
时结论成立,
假设当
时结论成立,即
,
当
时,![]()
而![]()
∴![]()
即
时结论也成立,
∴当
时,
成立。
…………11分
综上得,当
时,
;
当
时,
;
当
时,
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com